TEORIAS E FILOSOFIAS DE GRACELI 135+

 


terça-feira, 22 de janeiro de 2019










x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D






x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D






x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D






Carga elétrica (AO 1945: carga eléctrica) é uma propriedade física fundamental que determina as interações eletromagnéticas. Esta carga está armazenada em grande quantidade nos corpos ao nosso redor, mas a percepção dela não ocorre facilmente. Convenciona-se a existência de dois tipos de carga, a positiva e a negativa, que, em equilíbrio, são imperceptíveis. Quando há tal igualdade ou equilíbrio de cargas num corpo, diz-se que está eletricamente neutro, ou seja, está sem nenhuma carga líquida para interagir com outros corpos. Um corpo está carregado eletricamente quando possui uma pequena quantidade de carga desequilibrada ou carga líquida. Objetos carregados eletricamente interagem exercendo forças, de atração ou repulsão, uns sobre os outros. A unidade de medida da grandeza carga elétrica no Sistema Internacional de Unidades é o coulomb, representado por C, que recebeu este nome em homenagem ao físico francês Charles Augustin de Coulomb.[1]
Entre partículas elétricas existem forças gravitacionais de atração devido às suas massas e forças elétricas devidas às suas cargas elétricas. Nesse caso, as forças gravitacionais podem ser desprezadas, visto que a massa de uma partícula é ínfima. A força gravitacional só é perceptível quando há a interação entre corpo de massas de grandes proporções, como a Terra e a Lua, por exemplo.
Os átomos são constituídos por prótonselétrons e nêutrons. Os prótons e os elétrons possuem cargas elétricas iguais em módulo, enquanto que os nêutrons e os fótons são eletricamente neutros. Por mera convenção define-se que os prótons possuem uma carga elétrica elementar de uma unidade positiva, representada por +e, e também que os elétrons têm uma carga elétrica negativa, expressa por -e.
Quantização da carga. Nas colisões entre partículas a altas energias são produzidas muitas outras novas partículas, diferentes dos eletrões, protões e neutrões. Todas as partículas observadas têm sempre uma carga que é um múltiplo inteiro da carga elementar  Assim, a carga de qualquer objeto é sempre um múltiplo inteiro da carga elementar.
Nas experiências de eletrostática, as cargas produzidas são normalmente equivalentes a um número muito elevado de cargas elementares. Por tanto, nesse caso é uma boa aproximação admitir que a carga varia continuamente e não de forma discreta.
Conservação da carga. Em qualquer processo, a carga total inicial é igual à carga total final. Nos casos dos fenómenos em que existe transferência de eletrões entre os átomos, a conservação de carga é evidente. Mas nos casos de criação de novas partículas não teria que ser assim, de facto em todos os processos observados nos raios cósmicos, e nos aceleradores de partículas, existe sempre conservação da carga, ou seja, sempre que uma nova partícula é criada, é também criada uma outra partícula com carga simétrica.

    Lei de Coulomb

    Ver artigo principal: Lei de Coulomb
    Essa lei estabelece que "a força de atração ou repulsão entre dois corpos carregados é diretamente proporcional ao produto de suas cargas e inversamente proporcional ao quadrado da distância".[2] Pela lei de Coulomb, duas cargas elétricas pontuais de 1 coulomb separadas de um metro exercem uma sobre a outra uma força de 9 × 109 N, isto é, aproximadamente o peso de 900 000 toneladas. O coulomb é, portanto, uma unidade de ordem de grandeza elevada para exprimir quantidades de cargas estáticas e utilizam-se geralmente seus sub-múltiplos microcoulomb (μC) ou nanocoulomb (nC).
    Outras unidades de medida de carga elétrica, usadas em situações especiais, são:

    Força entre cargas[editar | editar código-fonte]

    Duas cargas pontuais, separadas por uma distância r.
    No século XVIII Benjamin Franklin descobriu que as cargas elétricas colocadas na superfície de um objeto metálico podem produzir forças elétricas elevadas nos corpos no exterior do objeto, mas não produzem nenhuma força nos corpos colocados no interior.
    No século anterior Isaac Newton já tinha demonstrado de forma analítica que a força gravítica produzida por uma casca oca é nula no seu interior. Esse resultado é consequência da forma como a força gravítica entre partículas diminui em função do quadrado da distância.[3]
    Concluiu então Franklin que a força elétrica entre partículas com carga deveria ser também proporcional ao inverso do quadrado da distância entre as partículas. No entanto, uma diferença importante entre as forças elétrica e gravítica é que a força gravítica é sempre atrativa, enquanto que a força elétrica pode ser atrativa ou repulsiva:
    • A força elétrica entre duas cargas com o mesmo sinal é repulsiva.
    • A força elétrica entre duas cargas com sinais opostos é atrativa.
    Vários anos após o trabalho de Franklin, Charles de Coulomb fez experiências para estudar com precisão o módulo da força eletrostática entre duas cargas pontuais.
    Uma carga pontual é uma distribuição de cargas numa pequena região do espaço.
    lei de Coulomb estabelece que o módulo da força elétrica entre duas cargas pontuais é diretamente proporcional ao valor absoluto de cada uma das cargas, e inversamente proporcional à distância ao quadrado
    onde  é a distância entre as cargas,  e  são as cargas das duas partículas,  é uma constante de proporcionalidade designada de constante de Coulomb, e  é a constante dielétrica do meio que existir entre as duas cargas. A constante dielétrica do vácuo é exatamente igual a 1, e a constante do ar é muito próxima desse valor; assim, se entre as cargas existir ar,  pode ser eliminada na equação.[4]
    No sistema internacional de unidades, o valor da constante de Coulomb é:
    Outros meios diferentes do ar têm constantes dielétricas K sempre maiores que o ar; consequentemente, a força elétrica será mais fraca se as cargas pontuais forem colocadas dentro de um meio diferente do ar.[4]

    Campo elétrico[editar | editar código-fonte]

    Uma forma diferente de explicar a força eletrostática entre duas partículas com carga consiste em admitir que cada carga elétrica cria à sua volta um campo que atua sobre outras partículas com carga. Se colocarmos uma partícula com carga  num ponto onde existe um campo elétrico, o resultado será uma força elétrica ; o campo elétrico define-se como a força por unidade de carga:[5]
    Consequentemente, o campo elétrico num ponto é um vetor que indica a direção e o sentido da força elétrica que sentiria uma carga unitária positiva colocada nesse ponto.
    Campo elétrico produzido por uma carga pontual positiva Q e representação do campo usando linhas de campo.
    De forma inversa, se soubermos que num ponto existe um campo elétrico , podemos calcular facilmente a força elétrica que atua sobre uma partícula com carga , colocada nesse sítio: a força será . Precisamos apenas de conhecer o campo para calcular a força; não temos de saber quais são as cargas que deram origem a esse campo. [4] No sistema SI, o campo elétrico tem unidades de newton sobre coulomb (N/C).
    Como vimos, a força elétrica produzida por uma carga pontual positiva  sobre uma segunda carga de prova positiva é sempre uma força repulsiva, com módulo que diminui proporcionalmente ao quadrado da distância. Assim, O campo elétrico produzido por uma carga pontual positiva  são vetores com direção e sentido a afastar-se da carga, como se mostra no lado esquerdo da figura ao lado.
    Uma forma mais conveniente de representar esse campo vetorial consiste em desenhar alguma linhas de campo, como foi feito no lado direito da figura anterior. Em cada ponto, a linha de campo que passa por esse ponto aponta na direção do campo. O módulo do campo é maior nas regiões onde as linhas de campo estão mais perto umas das outras.[4]
    Para calcular o valor do campo elétrico produzido pela carga pontual  num ponto, coloca-se uma carga de prova  nesse ponto e divide-se a força elétrica pela carga . Usando a lei de Coulomb, obtemos o módulo do campo elétrico produzido pela carga :
    onde  é a distância desde a carga , que produz o campo, até o ponto onde se calcula o campo. O sinal da carga  indicará se o campo é repulsivo  ou atrativo .
    O campo elétrico criado por uma única carga pontual é muito fraco para ser observado. Os campos que observamos mais facilmente são criados por muitas cargas; seria preciso somar vetorialmente todos os campos de cada carga para obter o campo total.[4]
    As linhas de campo elétrico produzidas por um sistema de muitas cargas já não serão retas, como na figura anterior, mas poderão ser curvas.

    Carga por indução[editar | editar código-fonte]

    Procedimento usado para carregar dois condutores com cargas iguais mas de sinais opostos.
    Um método usado para carregar dois condutores isolados, ficando com cargas idênticas mas de sinais opostos, é o método de carga por indução ilustrado na figura. Os dois condutores isolados são colocados em contato. A seguir aproxima-se um objeto carregado, como se mostra na figura abaixo. O campo elétricoproduzido pelo objeto carregado induz uma carga de sinal oposto no condutor que estiver mais próximo, e uma carga do mesmo sinal no condutor que estiver mais afastado. [4]
    A seguir, separam-se os dois condutores mantendo o objeto carregado na mesma posição. Finalmente, retira-se o objeto carregado, ficando os dois condutores carregados com cargas opostas; em cada condutor as cargas distribuem-se pela superfície, devido à repulsão entre elas, mas as cargas dos dois condutores já não podem recombinar-se por não existir contato entre eles.
    Na máquina de Wimshurst, usa-se esse método para separar cargas de sinais opostos. Os condutores que entram em contato são duas pequenas lâminas metálicas diametralmente opostas sobre um disco isolador, quando passam por duas escovas metálicas ligadas a uma barra metálica.[4]
    As duas lâminas permanecem em contato apenas por alguns instantes, devido a que o disco roda. Se no momento em que duas das lâminas de um disco entram em contato uma lâmina do disco oposto estiver carregada, essa carga induzirá cargas de sinais opostos nas duas lâminas que entraram em contato. Essas cargas opostas induzidas em duas regiões do disco induzem também cargas no disco oposto, porque nesse disco também há uma barra que liga temporariamente as lâminas diametralmente opostas.
    Em cada disco, após induzirem cargas no disco oposto, as cargas saltam para dois coletores ligados a duas garrafas metálicas; uma das garrafas armazena carga positiva e a outra carga negativa. Quando as cargas acumuladas nas garrafas forem elevadas produz-se uma descarga elétrica entre as pontas de duas barras ligadas às garrafas, ficando descarregadas. Essa descarga elétrica é um pequeno trovão com uma faísca bastante luminosa.[4]
    Os dois discos rodam em sentidos opostos e as duas barras que estabelecem o contato em cada disco e os dois coletores estão colocados de forma a que na rotação de cada lâmina no disco, primeiro seja induzida uma carga que a seguir induz carga oposta no disco oposto e logo passe para o coletor, ficando descarregada e pronta para iniciar outro ciclo.
    A cada ciclo as cargas induzidas aumentam, porque cada lâmina é induzida pelas cargas de várias lâminas no disco oposto. Para iniciar o processo basta com que uma das lâminas tenha acumulado alguma pequena carga por contato com outro corpo como, por exemplo, o ar à volta. A localização inicial dessa lâmina com carga determinará qual das garrafas acumula carga positiva e qual negativa.[4]








    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    quinta-feira, 24 de janeiro de 2019








    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D






    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    Logo:
    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    Abaixo da qual se manifestam os efeitos do ferromagnetismo. As quantidades “s” e “k” são os autovalores do spin e a constante de Boltzmann repectivamente, enquanto  é dado por:

    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D







    Historicamente, o termo ferromagnético foi usado para qualquer material que exibisse magnetização espontânea, i.e, um momento magnético na ausência de um campo magnético externo. Esta definição geral é ainda de uso comum. Mais recentemente, no entanto, diferentes classes de magnetização espontânea foram identificadas. Em particular, um material é ferromagnético somente se todos os seus íons magnéticos adicionarem uma contribuição positiva para a magnetização líquida. Se alguns dos íons magnéticos subtrair a magnetização líquida (se forem parcialmente antialinhados), então o material é ferrimagnético. Se os momentos dos íons alinhados e antialinhados forem iguais, de modo a ter magnetização líquida zero, apesar do ordenamento magnético, então o material é um antiferromagneto. Estes efeitos de alinhamento só ocorrem em temperaturas abaixo de uma determinada temperatura crítica, denominada temperatura Curie (para ferromagnetos e ferrimagnetos) ou a temperatura Néel (para antiferromagneto).

    Ciclo de histerese[editar | editar código-fonte]

    Quando um campo magnético externo é aplicado a um ferromagneto como o ferro, os dipolos atômicos irão alinhar-se com ele. Mesmo quando o campo é removido, parte do alinhamento vai ser mantido: o material tornou-se magnetizado. Uma vez magnetizado, o imã vai ficar magnetizado por tempo indeterminado. Para desmagnetizar exige-se aplicação de calor ou de um campo magnético na direção oposta. Este é o efeito que fornece o elemento de memória em uma unidade de disco rígido.
    A relação entre a indução magnética H e a magnetização M não é linear em tais materiais. Se um ímã é desmagnetizado (H = M = 0) e a relação entre H e M é plotada para aumento dos níveis de intensidade de campo, M segue a curva de magnetização inicial. Esta curva aumenta rapidamente no início e depois se aproxima de uma assíntota chamada saturação magnética. Se o campo magnético é agora reduzido monotonicamente, M segue uma curva diferente. Em uma intensidade de campo igual a zero, a magnetização é compensada a partir da origem de um montante chamado de remanência. Se a relação entre H e M for traçado para todas as forças de campo magnético aplicado o resultado é um ciclo de histerese chamado de loop principal.
    Um olhar mais atento em uma curva de magnetização geralmente revela uma série de pequenos saltos aleatórios na magnetização chamados saltos Barkhausen. Este efeito é devido a defeitos cristalográficos tais como deslocamentos.

    Origem física[editar | editar código-fonte]

    O fenômeno da histerese em materiais ferromagnéticos é o resultado de dois efeitos: a rotação do vetor magnetização e as mudanças no tamanho ou número de domínios magnéticos. Em geral, a magnetização varia (em direção, mas não magnitude) através de um ímã.
    Ímãs maiores são divididos em regiões chamadas de domínios. Em cada domínio, a magnetização não varia, mas entre os domínios temos paredes de domínio relativamente finas em que a direção da magnetização gira na direção de um domínio para outro. Se o campo magnético muda, as paredes se movem, mudando assim o tamanho relativo dos domínios.

    Aplicações[editar | editar código-fonte]

    Há uma grande variedade de aplicações da histerese em ferromagnetos. Muitos destes fazem uso de sua capacidade de reter memória, por exemplo, cartões de fita magnética, discos rígidos, e de crédito. Nestas aplicações, ímãs de disco rígido como o ferro são desejáveis para a memória não ser facilmente apagada.

    Método de medição dos campos[editar | editar código-fonte]

    O método descrito pelo ciclo de histerese mede o campo de indução magnética  em função do campo magnético . Se considermos um anel de material ferromagnético de seção A e raio R constante, envolvido por N espiras pelas quais passa uma corrente contínua I. Nesta situação, os campos são circulares dentro do anel e são desprezíveis fora dele. Deste modo se calcula o valor de  a partir da Lei de Ampère:
    e, como o anel tem simetria circular, a integral resulta:
    Levando em conta a permeabilidade magnética relativa do material , é possível calcular o campo de indução magnética:
    Este sistema é usado na prática para medir os dois campos ao variar a intensidade da corrente:
    Uma vez medidos  e  se pode encontrar o valor da magnetização :
    Por meio desse procedimento é possível obter experimentalmente a curva de magnetização, ou a variação do campo magnético em função do vetor de indução magnética e, portanto, o ciclo de histerese.

    Temperatura de Curie[editar | editar código-fonte]

    Marie Curie foi a primeira a descobrir que existe uma temperatura crítica para cada material ferromagnético acima da qual o material se comporta como paramagnético. Quando a temperatura aumenta, o movimento térmico compete com a tendência ferromagnética para os dipolos se alinharem. Quando a temperatura sobe além de certo ponto, chamado de temperatura Curie, há uma transição de fase de segunda ordem e o sistema não pode mais manter uma magnetização espontânea, embora ainda responda paramagneticalmente a um campo externo. Abaixo dessa temperatura, há uma quebra espontânea de simetria e forma-se domínios aleatórios (na ausência de um campo externo). A Susceptibilidade magnética segue a lei de Curie-Weiss:
    onde C é uma constante característica do material,  sua densidade e  a temperatura de Curie em kelvin.

    Modelos teóricos[editar | editar código-fonte]

    O ferromagnetismo representa um dos principais problemas em aberto da física do estado sólido. Existem dois modelos teóricos que o descrevam: o modelo de Ising e o modelo de Weiss, o qual será tratado a seguir, ambos sendo baseados na hamiltoniana de Werner Karl Heisenberg, mas que utilizam grandes aproximações.

    Hamiltoniana de Heisenberg[editar | editar código-fonte]

    hamiltoniana para um par de elétrons pertencentes a átomos vizinhos é:
    onde  e  são as hamiltonianas apenas dos elétrons, e  é a interação entre os dois.
    Pelo princípio de exclusão de Pauli, a função de onda total deve ser antissimétrica. Assim, tem-se duas possibilidades:
    ou
    Onde os subscritos “A” ou “S” indicam uma função antissimétrica/simétrica.
    As funções de onda de spin para um par de elétrons são:
    As funções de onda “espaciais” são:
    Efetuando um cálculo perturbativo sobre tais funções de onda obtêm-se:
    Onde J é conhecida como integral de troca, que está relacionada com a Interação de Troca, interação responsável pela tendência dos momentos magnéticos do material a permanecerem paralelos entre si. A hamiltoniana separa, então, os estados com spins diferentes, e por este motivo, Heisenberg encontrou um operador que distinguisse os estados com spin diferente e que então pudesse descrever a interação precedente. Tal operador é:
    Logo, a Hamiltoniana de Heisenberg é:

    Modelo de Weiss[editar | editar código-fonte]

    O modelo de Weiss propõe a generalização da hamiltoniana de Heisenberg para um sistema com mais elétrons, utilizando uma aproximação de campo médio: um elétron sofre uma interação devida à média do campo gerado pelos outros elétrons.
    A Hamiltoniana do sistema torna-se então:
    onde  são, respectivamente o fator giromagnético e o magnéton de Bohr.
    Substituindo o momento magnético:
    E o vetor magnetização:
    Tem-se:
    Logo:
    Percebe-se uma analogia com o paramagnetismo de Langevin, no qual se faz o mesmo tipo de estudo, substituindo-se o campo magnético por um campo magnético eficaz, dado por:
    .
    Existe, assim, uma temperatura crítica de Curie:
    Abaixo da qual se manifestam os efeitos do ferromagnetismo. As quantidades “s” e “k” são os autovalores do spin e a constante de Boltzmann repectivamente, enquanto  é dado por:

    Materiais ferromagnéticos[editar | editar código-fonte]

    A seguir, temos uma tabela com alguns materiais ferromagnéticos e suas respectivas temperaturas de Curie.
    MaterialTemp. Curie
    (K)
    Fe1043
    Co1388
    Ni627
    Gd292
    Dy88
    MnAs318
    MnBi630
    MnSb587
    CrO2386
    MnOFe2O3573
    FeOFe2O3858
    NiOFe23858
    CuOFe2O3728
    MgOFe23713
    EuO69
    Y3Fe5O12560
    Ferromagnetismo é uma propriedade não apenas da composição química de um material, mas de sua estrutura cristalina e organização microscópica. Existem ligas de metal ferromagnético cujos constituintes não são próprios ferromagnéticos, chamado ligas de Heusler, em homenagem a Fritz Heusler. Por outro lado existem ligas não-magnéticos, como os tipos de aço inoxidável, composto quase exclusivamente de metais ferromagnéticos.
    Também se pode fazer ligas metálicas amorfas (não cristalinas) ferromagnéticas por resfriamento muito rápido de uma liga líquida. Estes têm a vantagem de que suas propriedades são quase isotrópicas (não alinhadas ao longo de um eixo do cristal), o que resulta em baixa coercividade, perda de baixa histerese, permeabilidade alta e alta resistividade elétrica. Um material desse tipo é normalmente uma transição liga metal-metalóide, feita a partir de cerca de 80% de metal de transição (normalmente Fe, Co, ou Ni) e um componente de metalóide (B, C, Si, P, ou Al) que reduz o ponto de fusão.
    Uma classe relativamente nova de materiais ferromagnéticos excepcionalmente fortes são os ímãs de terras raras. Eles contêm elementos lantanídeos, que são conhecidos por sua capacidade de transportar grandes momentos magnéticos no bem localizado oribital f.








    Estadologia Graceli – 4. E princípio entrópico tempo / instabilidade.


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.






    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    terça-feira, 22 de janeiro de 2019










    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    ,
    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    .
    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D






    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D







    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D






    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D










    Advento da teoria clássica dos campos[editar | editar código-fonte]



    Pode-se considerar que a noção de campo surgiu inicialmente como uma construção matemática na descrição da gravitação newtoniana. No século XIX, tal formalismo logo foi estendido tanto para fenômenos elétricos quanto magnéticos por físicos como AmpèreOhm e Faraday.
    Devido aos trabalhos de Maxwell, o conceito de campo passa a ocupar o papel de maior importância na descrição fenomenológica da realidade. Maxwell mostrou, através de um conjunto de equações que recebem seu nome, que os fenômenos magnéticos e elétricos estão intrinsecamente associados e que devem ser descritos por uma única entidade: o campo eletromagnético [4].
    Conceitualmente, Maxwell mostrou a relação entre campos elétricos e magnéticos, bem como o reconhecimento de que a luz (óptica) é uma manifestação particular deste campo eletromagnético. Dentro dessa perspectiva histórica, a unificação dos fenômenos eletromagnéticos realizado por Maxwell foi a segunda grande unificação, a primeira sendo a unificação da dinâmica celeste e terrestre realizada por Isaac Newton ainda no século XVII [5].

    Mecânica, Eletromagnetismo e Relatividade[editar | editar código-fonte]

    eletromagnetismo foi a "raison d’être" do surgimento da relatividade. Com a inadequação das transformações de Galileu quando aplicadas à equação de onda tridimensional, surgiu um dilema: ou se preservava a mecânica clássica e abandonava-se o nascente eletromagnetismo, ou se preservava este e abandonava-se quase três séculos de previsões solidamente confirmadas pela experimentação.
    O caminho foi achado, surpreendemente, numa espécie de conciliação entre as duas alternativas.
    Inicialmente, Woldemar Voigt derivou em 1887 um conjunto de relações, baseado apenas na equação de onda ordinária, devida a Jean D'Alembert. Essas relações eram transformações espaciais e temporais que deixavam invariante a forma desta equação.
    Estas relações são as que se conhecem como transformações de Lorentz-Fitzgerald, cientistas que redescobriram estas transformações mais tarde. Em particular, Lorentz o fez num contexto diferente, na tentativa de se reconciliar as teorias do éter com os resultados de experiências físicas, tais como a de Michelson-MorleyEinstein então entra em cena, com seu trabalho seminal de 1905, "Sobre a Eletrodinâmica dos Corpos em Movimento", onde introduz a relatividade, interpretando corretamente as transformações de Lorentz-Fitzgerald como alterações do espaço e do tempo em função da velocidade relativa entre os referenciais.

    Termodinâmica e mecânica quântica[editar | editar código-fonte]A mecânica quântica surgiu da incapacidade conjunta da termodinâmica e do eletromagnetismo clássicos de prever a correta distribuição de energias em função da frequência no problema da radiação de corpo negro.

    A tentativa de derivação feita por Lord Rayleigh e por James Jeans postulava que cada onda eletromagnética estava em equilíbrio com as paredes do forno. Isso se traduz num teorema que mantém sua validade mesmo na mecânica quântica:
    Numa cavidade fechada em equilíbrio térmico com o campo eletromagnético confinado, o campo é equivalente a um conjunto enumeravelmente infinito de osciladores harmônicos, e a sua energia é igual à soma das energias desses osciladores. Cada frequência corresponde aos osciladores tomados dois a dois.
    Max Planck obteve a forma correta da distribuição porque postulou a quantização da energia dos osciladores harmônicos que comporiam as paredes da cavidade que confina a radiação. Essa hipótese teve por efeito introduzir um limite máximo de freqüência acima do qual há um corte (cutoff) nas contribuições dos entes (ondas eletromagnéticas) que estão em equilíbrio.
    Einstein, para explicar o efeito fotoelétrico, ampliou o conceito da quantização para a energia radiante, postulando a existência do fóton (o que "implicitamente" quer dizer que as equações de Maxwell não tem validade ilimitada, porque a existência do fóton implica não-linearidades).
    A antiga teoria quântica cedeu lugar à mecânica quântica moderna quando Schrödinger desenvolveu a famosa equação que leva o seu nome. Entretanto, a primeira versão que ele desenvolveu foi a equação que hoje é conhecida como equação de Klein-Gordon, que é uma equação relativista, mas que não descrevia bem o átomo de hidrogênio, por razões que só mais tarde puderam ser entendidas. Assim, ele abandonou a primeira tentativa, chegando à sua equação (equação de Schrödinger):
    A equação de Schrödinger acima colocada é a equação "dependente do tempo", pois o tempo aparece explicitamente. Neste caso, as soluções  são funções das coordenadas espaciais e do tempo.
    Quando o potencial  não depende do tempo, ou seja, quando o campo de força ao qual a partícula está submetida é conservativo, é possível separar as variáveis  e .
    A equação que a parte espacial da função de onda  obedece é:
    conhecida como equação de Schrödinger "independente do tempo". Esta é uma equação de autovalores, ou seja, através dela se obtêm simultaneamente autofunções (no caso as funções de onda ) e autovalores (no caso, o conjunto das energias estacionárias ).

    Formulação matemática[editar | editar código-fonte]

    Mecânica clássica e mecânica quântica[editar | editar código-fonte]

    A dinâmica de uma partícula pontual de massa  em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana [6][7] 
    ,
    em que  (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e  é o potencial em que a partícula se move. Minimizando o funcional ação
    
    encontra-se a equação de movimento para esse sistema,
    ,
    que é a equação de Newton, desde que 
    Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento  
    ,
    de maneira que a função hamiltoniana é dada por
    ,
    que para a escolha da lagrangiana acima, tem-se
    .
    Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de  tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton 
    ,
    e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,
    
    onde o parêntese de Poisson é definido como
    .
    Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]
    ,
    onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se
    .
    Um aspecto importante a ser observado é que os operadores  e  podem ser representados como os operadores diferencias
    
    de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função 
    ,

    Teoria Clássica de Campos[editar | editar código-fonte]

    A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com  graus de liberdade, que consiste de  partículas pontuais de massa , separadas por uma distância e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:
    .
    Esse sistema pode ser estendido facilmente para o limite em que  e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma
    ,
    onde  representa o deslocamento da partícula relativa a posição  no instante de tempo . Também, define-se as quantidades  .
    Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que  e das derivadas , dessa maneira, o funcional ação pode ser escrito como
    .
    Finalmente, a lagrangiana pode ser escrita como
    ,
    onde , é conhecida como densidade lagrangiana [9]. A equação de Euler-Lagrange é:
    .

    Primeiras unificações. Equações relativísticas[editar | editar código-fonte]

    Question book.svg
    Esta seção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde fevereiro de 2018). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
    Encontre fontes: Google (notíciaslivros e acadêmico)

    Equação de Klein-Gordon[editar | editar código-fonte]

    Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:
    onde
    A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.
    Usando-se a definição relativística de energia
    chega-se à equação:
    Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.
    Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.

    Equação de Dirac[editar | editar código-fonte]

    Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos
    1. A equação deveria ser linear na derivada temporal;
    2. A equação deveria ser relativisticamente covariante.
    A equação obtida por ele tinha a seguinte forma:
    onde  e  não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções  são na verdade matrizes coluna da forma
    e as matrizes  e  devem ser hermitianas.
    A equação de Dirac, diferentemente da equação de Klein-Gordon, é uma equação que dá bons resultados para partículas de spin ½. Aliás, um dos sucessos é que esta equação incorpora o spin de forma natural, o que não ocorre com a equação de Schrondinger, onde o spin é admitido posteriormente como uma hipótese ad hoc. Não obstante, isso levou certos autores a afirmarem que o spin é um grau de liberdade relativístico, o que é contestado. Outro sucesso da equação de Dirac foi prever a existencia do pósitron, já que a equação previa valores negativos de energia, o que foi inicialmente interpretado, à luz da [[teoria dos buracos], como indicação de elétrons com energias negativas. Essa teoria afirmava que os pósitrons seriam vacâncias produzidas pela promoção desses elétrons para estados com energias positivas. O vácuo é então visto como um mar de elétrons onde eles estariam compactamente colocados. Hoje, entretanto, essa teoria cedeu lugar à questão de criação e aniquilação de partículas num contexto mais geral da quantização canônica dos campos.

    Desenvolvimento da teoria quântica dos campos[editar | editar código-fonte]

    A origem da teoria quântica dos campos é marcada pelos estudos de Max Born e Pascual Jordan em 1925 sobre o problema da computação da potência irradiada de um átomo em uma transição energética.
    Em 1926, Born, Jordan e Werner Heisenberg formularam a teoria quântica do campo eletromagnético desprezando tanto a polarização como a presença de fontes, levando ao que se chama hoje de uma teoria do campo livre. Para tanto, usaram o procedimento da quantização canônica.
    Três razões principais motivaram o desenvolvimento da teoria quântica dos campos:
    • A necessidade da uma teoria que lidasse com a variação do número de partículas;
    • A necessidade de conciliação entre as duas teorias: mecânica quântica e a relatividade;
    • A necessidade de lidar com estatísticas de sistemas multipartículas.

    Quantização canônica dos campos[editar | editar código-fonte]

    Um campo, no esquema conceitual da teoria dos campos, é uma entidade com infinitos graus de liberdade.
    O estado de mais baixa energia, chamado de vácuo, corresponde à ausência de partículas.
    Estas, entretanto, podem ser criadas ou destruídas através de dois operadores:
    • : operador criação
    • : operador aniquilação
    que agem sobre a função de onda do campo, respectivamente simbolizando a criação e a aniquilação de partículas dotadas de momento , possibilidade exigida pela relatividade.
    Os operadores, agindo sobre os estados de um tipo específico de espaço de Hilbert, chamado espaço de Fock, criam e destroem as partículas. Entretanto, uma restrição é:
    o que quer dizer que não pode haver aniquilação sobre o estado básico, já que nesse caso não há partículas a serem aniquiladas.








    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    Comentários