TEORIAS E FILOSOFIAS DE GRACELI 133
- Gerar link
- X
- Outros aplicativos
a indeterminalidade do Princípio de exclusão de Pauli no sistema decadim e categ. Graceli
terça-feira, 15 de janeiro de 2019
indeterminalidade de exclusão de Graceli em seu sistema decadimensional e categorial.
o princípio da exclusão é indeterminado no sistema decadimensional e categorial Graceli, porque não existe dois férmions idênticos, como também um estado quântico nunca se repete, ou seja, é indeterminado. como também para cada férmions se tem estados diferentes de energia, físico, potencial, fenomênico, transcendente, e outros, como também se tem variáveis de potenciais de transições de fases para cada estado.
com isto também não se tem produção de pares, simetrias, paridades, cpt.
O princípio de exclusão de Pauli é um princípio da mecânica quântica formulado por Wolfgang Pauli em 1925. Ele afirma que dois férmionsidênticos não podem ocupar o mesmo estado quântico simultaneamente. Uma forma mais rigorosa de enunciar este princípio é dizer que a função de onda total de um sistema composto por dois férmions idênticos deve ser antissimétrica, com respeito ao cambiamento de duas partículas. Para elétrons de um mesmo átomo, ele implica que dois elétrons não podem ter os mesmos quatro números quânticos. Por exemplo, se os números quânticos
,
, e
são iguais nos dois elétrons, estes deverão necessariamente ter os números
diferentes, e portanto os dois elétrons têm spins opostos.
O princípio de exclusão de Pauli é uma consequência matemática das restrições impostas por razões de simetria ao resultado da aplicação do operador de rotação a duas partículas idênticas de spin semi-inteiro.
No entanto, se
e
são exatamente o mesmo estado, a expressão acima é identicamente nula:
x
decadimensional Graceli.
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Postado por cientista e filósofo Ancelmo Luiz Graceli às 01:11
o princípio da exclusão é indeterminado no sistema decadimensional e categorial Graceli, porque não existe dois férmions idênticos, como também um estado quântico nunca se repete, ou seja, é indeterminado.
O princípio de exclusão de Pauli é um princípio da mecânica quântica formulado por Wolfgang Pauli em 1925. Ele afirma que dois férmionsidênticos não podem ocupar o mesmo estado quântico simultaneamente. Uma forma mais rigorosa de enunciar este princípio é dizer que a função de onda total de um sistema composto por dois férmions idênticos deve ser antissimétrica, com respeito ao cambiamento de duas partículas. Para elétrons de um mesmo átomo, ele implica que dois elétrons não podem ter os mesmos quatro números quânticos. Por exemplo, se os números quânticos
,
, e
são iguais nos dois elétrons, estes deverão necessariamente ter os números
diferentes, e portanto os dois elétrons têm spins opostos.
O princípio de exclusão de Pauli é uma consequência matemática das restrições impostas por razões de simetria ao resultado da aplicação do operador de rotação a duas partículas idênticas de spin semi-inteiro.
No entanto, se
e
são exatamente o mesmo estado, a expressão acima é identicamente nula:
x
decadimensional Graceli.
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Postado por cien
condensado e temperatura crítica no SDC GRACELI
segunda-feira, 28 de janeiro de 2019
O abrandamento de átomos por meio de arrefecimento produz um estado quântico único conhecido como condensado de Bose ou condensado de Bose-Einstein. Este fenômeno foi teorizado nos anos 20 por Albert Einstein, ao generalizar o trabalho de Satyendra Nath Bose sobre a mecânica estatística dos Fótons (sem massa) para átomos(com massa). (O manuscrito de Einstein, que se pensava estar perdido, foi encontrado em 2005 numa biblioteca da Universidade de Leiden). O resultado do trabalho de Bose e Einstein é o conceito de gás de Bose, governado pela estatística de Bose-Einstein que descreve a distribuição estatística de partículas idênticas de spin inteiro, conhecidas hoje em dia como Bósons. As partículas bosónicas, que incluem o Fóton e átomos como o He-4, podem partilhar estados quânticos umas com as outras. Einstein especulou que arrefecendo os átomos bosónicos até temperaturas muito baixas os faria colapsar (ou "condensar") para o mais baixo estado quântico acessível, resultando numa nova forma de matéria.
Esta transição ocorre abaixo de uma temperatura crítica, a qual, para um gás tridimensional uniforme consistindo em partículas não-interactivas e sem graus internos de liberdade aparentes, é dada por:
onde:
é a temperatura crítica, a densidade da partícula, a massa por bóson, a constante de Planck, a constante de Boltzmann, e a função zeta de Riemann; ≈ 2.6124.
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
teoria da criticidade de Graceli.
como na temperatura crítica existe também a condutividade crítica que varia em relação aos materiais, isótopos, estados e conforme os sistema decadimensional e categorial Graceli. o mesmo acontece para transições de estados, solidificação, e energia ferromagnética.
vejamos para:
Temperatura de Curie[editar | editar código-fonte]
Marie Curie foi a primeira a descobrir que existe uma temperatura crítica para cada material ferromagnético acima da qual o material se comporta como paramagnético. Quando a temperatura aumenta, o movimento térmico compete com a tendência ferromagnética para os dipolos se alinharem. Quando a temperatura sobe além de certo ponto, chamado de temperatura Curie, há uma transição de fase de segunda ordem e o sistema não pode mais manter uma magnetização espontânea, embora ainda responda paramagneticalmente a um campo externo. Abaixo dessa temperatura, há uma quebra espontânea de simetria e forma-se domínios aleatórios (na ausência de um campo externo). A Susceptibilidade magnética segue a lei de Curie-Weiss:
onde C é uma constante característica do material,
sua densidade e
a temperatura de Curie em kelvin.
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Estadologia Graceli – 4. E princípio entrópico tempo / instabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Postado por physicists Ancelmo Luiz Graceli às 02:43
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Postado por cie
equação de Planck da radiação no sistema decadimensional e categorial Graceli
quarta-feira, 16 de janeiro de 2019
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
A Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.
A tabela seguinte descreve as variáveis e unidades utilizadas:
Variável Descrição Unidade radiância espectral J•s−1•m−2•sr−1•Hz−1 frequência hertz temperatura do corpo negro kelvin constante de Planck joule / hertz velocidade da luz no vácuo metros / segundo número de Euler sem dimensão constante de Boltzmann joule / kelvin
O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):
Pode-se escrever a Lei de Planck em termos de energia espectral:
A energia espectral também pode ser expressa como função do comprimento de onda:
Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à freqüência de oscilação
[1]:
Planck assumiu a essa quantização, cinco anos depois de Albert Einstein ter sugerido a existência de fótons como um meio de explicar o efeito fotoelétrico. Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiança tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por Rayleigh e Jeans.
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
+
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Maser, Laser
O PNF de 1964 foi atribuído aos físicos, o norte-americano Charles Hard Townes (n.1915) e os russos Nikolai GennadievichBasov (1922-2001) e Aleksandr Mikhailovich Prokhorov (1916-2002) por seus trabalhos sobre a eletrônica quântica e que resultaram na construção do maser (microwave amplification by stimulated emission of radiation) (“amplificação de micro-ondas estimulada por emissão de radiação”) e do laser (light amplification by stimulated emission of radiation) (“amplificação de luz estimulada por emissão de radiação”). O PNF de 1966 foi concedido ao físico franco-alemão Alfred Kastler (1902-1984) por haver descoberto novas técnicas ópticas para estudar a ressonância de ondas hertezianas (vide verbete nesta série) em átomos.
A ideia teórica da possibilidade de emissão estimulada, base desses dois dispositivos eletrônicos foi proposta pelo físico germano-suíço-norte-americano Albert Einstein (1879-1955; PNF, 1921), em trabalhos realizados em 1916 (Verhandlungender Deutschen Physikalische Gesellschaft 18, p. 318; Mitteilungen der Physikalischen Gesellschaft zu Zürich 16, p. 47) e 1917 (Physikalische Zeitschrift 18, p. 121) nos quais tratou a radiação eletromagnética sob o ponto de vista mecânico estatístico. Com efeito, nesses trabalhos ele examinou um corpo negro (vide verbete nesta série) em equilíbrio contendo, além da radiação, átomos simples com apenas dois níveis de energia (En, Em), sendo que a passagem de um nível para o outro seria por intermédio da emissão (m
n) ou da absorção (n
m) de um quantum de luz de frequência dada por:
=
/h, onde h é a constante de Planck.
Além do mais, considerou ainda Einstein que o átomo e a radiação se mantinham em equilíbrio estatístico, quando o número de átomos que passa de um nível para o outro permanece o mesmo. Desse modo, ele obteve relações importantes entre as probabilidades de emissão e de absorção de radiação de densidade
, ocasião em que introduziu as famosas constantes Amn e Bmn (Bnm), sendo Amn relativa à emissão espontânea, Bnm relacionada com a absorção e Bmn com a emissão de radiação, sendo que estas duas últimas são radiações estimuladas. Usando essas definições e considerando que:
Bmn = Bnm ; Amn = (8
h
/c3) Bmn ,
Einstein demonstrou a hoje conhecida equação de Planck (1900)-Einstein (1916/1917):
com k sendo a constante de Boltzmann. Este era um resultado teórico em busca de uma aplicação prática, que somente aconteceu na década de 1950. [Abraham Pais, ‘Subtle is the Lord... The Science and the Life of Albert Einstein (Oxford University Press, 1983)]. Vejamos como essa aplicação aconteceu.
Em 1949 (Comptes Rendus de l´Academie des Sciences de Paris 229, p. 1213), o físico francês Jean Brossel(1918-2003) e Kastler desenvolveram uma técnica, mais tarde conhecida como bombeamento óptico (“inversão de população”). Basicamente, essa técnica é assim descrita. Quando um grupo de átomos é iluminado com um feixe de radiação eletromagnética de determinado comprimento de onda (hertziana ou visível), alguns desses átomos absorvem os quanta correspondentes, e irão do estado de energia fundamental (ou de outro estado próximo) para um dos estados mais energéticos. Como o tempo médio (vida média) desses estados excitados é em torno de 10-7 s, eles então voltam ao estado fundamental emitindo radiação fluorescente. Em 1950 (Journal de Physique et le Radium 12, p. 255), Kastler divulgou novos detalhes da técnica que havia desenvolvido em 1949, com a participação de Brossel. Com essa técnica, Kastler conseguiu mover átomos de seu estado fundamental para estados excitados. Em 1951 (Physical Review 81, p. 279), os físicos norte-americanos Edward Mills Purcell (1912-1997; PNF, 1952) e Robert Vivian Pound (n.1919) demonstraram a emissão estimulada einsteiniana assim como a “inversão de população”. Registre-se que, em 1952 (Journal de Physique 13, p. 668), Brossel, Kastler e J. M. Winter, em 1953 (Comptes Rendus de l´Academiedes Sciences de Paris 237, p. 984) e em 1954 (Journal de Physique 15, p. 6), Brossel, Bernard Cagnac e Kastler conseguiram obter transições (saltos) quânticas múltiplas (curvas de ressonância) do átomo de sódio (Na) usando a técnica do bombeamento óptico.
A idéia de amplificar uma radiação usando as transições rotacionais moleculares, conhecida com o princípio do gerador molecular, foi sendo paulatinamente desenvolvida por Townes, em 1951 (Journal of Applied Physics 22, p. 1365), e pelos físicos, o norte-americano Joseph Weber (1919-2000), em 1953 (Institute of Electrical and Electronic Engineers: Transactions on Electron Devices 3, p. 1), Basov e Prokhorov, em 1954 (Zhurnal Eksperimental´noi i Teoretiskoi Fiziki 27, p.431). Contudo, essa ideia só foi transformada em um dispositivo prático, ainda em 1954 (Physical Review 95, p. 282), quando Townes e os físicos norte-americanos James P. Gordon e Herbert J. Zeiger anunciaram que haviam construído o primeiro maserusando um gás de amônia (NH3). Aliás, registre-se que o nome maser só foi usado por esses físicos em 1955 (Physical Review99, p. 1264). Contudo, esse dispositivo funcionava intermitentemente, pois dispunha de apenas dois níveis de energia, n1 e n2, com n2 > n1. Assim, os elétrons do nível mais alto (n2) são estimulados e caem para o nível mais baixo (n1). Desse modo, a emissão estimulada só recomeçava quando havia um novo bombeamento de elétrons de n1
n2.
Para contornar a limitação indicada acima, o físico norte-americano Nicolas Bloembergen (n.1920; PNF, 1981) apresentou, em 1956 (Physical Review 104, p. 324), a ideia para a construção de um maser, usando três níveis de energia de íons paramagnéticos inseridos (dopados) em um cristal, ideia essa que ficou conhecida como maser de três níveis. Neste tipo de maser, um bombeamento óptico permite que a população de elétrons do nível 3 (n3) se mantenha substancialmente igual à do nível 1 (n1). Dessa forma, a emissão de micro-ondas estimuladas pode ocorrer de dois modos desde que, respectivamente, tenhamos n3 > n1 ou n2 > n1. Registre-se que esse tipo de maser foi construído no Bell Telephone Laboratories (BTL), usando um cristal de rubi (A
O3) com impurezas do metal paramagnético cromo (Cr3+), em 1958.
Muito embora o físico norte-americano Gordon Gould (1920-2005) haja, em 1957, sugerido o laser (light amplification by stimulated emission of radiation) (“amplificação de luz estimulada por emissão de radiação”), a ideia de construção de um laser (nome cunhado por ele), nas regiões de radiação infravermelha e visível (óptico), foi apresentada, em 1958 (PhysicalReview 112, p. 1940), por Townes e pelo físico norte-americano Arthur Leonard Schawlow (1921-1999; PNF, 1981). Note-se que, nesse mesmo ano de 1958, eles solicitaram a patente, a qual, no entanto, só lhes foi concedida em 1960 (US PatentNo.2.292.922). Ainda em 1958 (Zhurnal Eksperimental´noi i Teoretiskoi Fiziki 34, p. 1658), Prokhorov discutiu a possibilidade de amplificar uma radiação de comprimento de onda (
) menor do que 1 mm , usando as transições rotacionais da NH3. [Charles Hard Townes and Arthur Leonard Schawlow, Microwave Spectroscopy (Mc-Graw Hill Book Company, 1955); Charles Hard Townes; Nikolai Gennadievich Basov; Aleksandr Mikhailovich Prokhorov, Nobel Lectures (11 de dezembro de 1964); Arthur Kastler, Nobel Lectures (12 de dezembro de 1966); Nicolas Bloembergen e Arthur Leonard Schawlow, Nobel Lectures (08 de dezembro de 1981)].
Em 16 de maio de 1960, o físico norte-americano Theodore Harold Maiman (1927-2007) construiu o primeiro laser óptico usando um cristal róseo de rubi [A
O3 com 0,05% (em peso) de óxido de cromo (Cr2O3)], porém envolvendo três níveis de energia do mesmo íon de cromo (Cr+++) usado na construção do maser. Observe-se que os três níveis do Cr utilizados por Maiman foram: 1) duas bandas do 4F (4F1 e 4F2); 2) o estado metaestável 2E; 3) o estado fundamental. Como essas bandas são largas, eram puderam ser populadas (por bombeamento óptico) usando “flashes” de lâmpadas de xenônio (Xe). É interessante registrar que a revista norte-americana Physical Review rejeitou o trabalho de Maiman sobre a invenção do laser (anunciada no New York Times de 07 de julho de 1960), o qual só foi publicado em agosto de 1960, pelas revistas inglesas Nature 187, p. 493 (06 de agosto) e British Communication Electronics 1, p. 674. Registre-se que, em 1961, a Physical Review 123. publicou dois trabalhos (p. 1145; 1151) de Maiman e de seus colaboradores R. H. Hoskins, I. J. D´Haenens, C. K. Asawa e V. Evtuhov, nos quais descreveram a construção do primeiro laser.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
física quântica relativista de vibrações Graceli - no SISTEMA DECADIMEN. E CAT.
sexta-feira, 1 de fevereiro de 2019
como no sistema de piezoelétrico se tem um sistema de variações relativista e quântica para vibrações, como também ampliado para termodinâmica, mecânica, quântica, ondas, eletromagnetismo, radioatividade, estrutura dinâmica e transformativa do átomos e seus decaimentos com saltos quântico em seus orbitais, relatividade, e sistema decadimensional e categorial Graceli, e outros.
com efeitos sobre momentum dinâmico, eletromagnético, interações de cargas e elétrons, dilatações, vibrações, spins, calor, transformações, condutividade, transmutações, decaimentos, transformações de isótopos, emissões absorções, e outros.
vejamos algumas funções.
![{\displaystyle X={\frac {me\omega ^{2}}{[(k-M\omega ^{2})^{2}+(c\omega )^{2}]^{1/2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/78db6ea9fb5792e0e3e47e927459f3ad2b08892e)
Equação de Schrödinger Dependente do Tempo (geral)


= entropia reversível

Equação de Schrödinger Dependente do Tempo (geral)


= entropia reversível

Equação de Schrödinger Dependente do Tempo (geral)


= entropia reversível


Equação de Schrödinger Dependente do Tempo (geral)


= entropia reversível
![{\displaystyle \left[m\right]{\ddot {\overrightarrow {x}}}+\left[c\right]{\dot {\overrightarrow {x}}}+\left[k\right]{\overrightarrow {x}}={\overrightarrow {F}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3510657590d5cf6e7d084150e131ce03058f1be6)
Equação de Schrödinger Dependente do Tempo (geral)


= entropia reversível

x

= entropia reversível
a pressão altera a massa, a energia, o tempo e o espaço, geometria e inércia, interações de íons e eletrons e transformações, decaimentos e transmutações, emissões e absorções, condutividades, ondas e partículas, saltosn quântico, momentuns dinâmico e eletromagnético. muda isótopos e estruturas amorfas e cristalinas, difrações e refrações, estados físicos e estados de Graceli, estados e momentum quântico, e outros.
Equação de Schrödinger Dependente do Tempo (geral)


= entropia reversível

x


= entropia reversível
Saltar para a navegaçãoSaltar para a pesquisa




Ver artigo principal: Unidades de pressão

Ver artigo principal: Hidrostática


= entropia reversível


= entropia reversível


= entropia reversível


= entropia reversível


= entropia reversível




é definido como a variação de energia mecânica convertida em carga pela energia mecânica aplicada ao cristal, ou de modo similar, a energia elétrica convertida em energia mecânica pela energia elétrica aplicada ao cristal.

"Se você estiver no meio do oceano, e parar seu navio, posicionando um longo tubo em direção ao fundo do mar e colocando a outra extremidade próxima de seu ouvido, você ouvirá navios a grande distância de você."

= entropia reversível
,


= entropia reversível



= entropia reversível



= entropia reversível



= entropia reversível



= entropia reversível



= entropia reversível



= entropia reversível



= entropia reversível
com efeitos sobre momentum dinâmico, eletromagnético, interações de cargas e elétrons, dilatações, vibrações, spins, calor, transformações, condutividade, transmutações, decaimentos, transformações de isótopos, emissões absorções, e outros.
vejamos algumas funções.
- Força harmônica pelo desbalanceamento rotativo[1]
Massas desbalanceadas em máquinas rotativas são grandes causadoras de vibração em vários casos de engenharia, como exemplo mais clássico as rodas de um carro que quando estão desbalanceadas causam trepidações no veículo. Um sistema é dito desbalanceado quando o centro de massa desse sistema não coincide com seu centro de rotação. Uma representação simplificada dessa situação pode ser visualizada na figura ao lado. A máquina possui massa
e há uma outra massa
desbalanceada a uma distância e do seu centro de rotação que é denominada excentricidade. Esse sistema está acoplado a uma mola de rigidez
e a um amortecedor viscoso de constante de amortecimento
. Podemos relacionar a rotação dessa massa desbalanceada a uma força centrífuga
. Essa força pode ser decomposta em componentes horizontal
que será anulada pelo anteparo fixador dessa máquina, como uma parede, e uma componente vertical
que agirá sob o conjunto mola-amortecedor e o fará vibrar. Para esse fenômeno podemos aproveitar dos resultados de outros fenômenos de vibração e descrever a solução particular
. Sendo
a amplitude da vibração,
a frequência de oscilação da massa desbalanceada e
o ângulo de fase. Os valores de
e
são
x
Equação de Schrödinger Dependente do Tempo (geral)
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
Equação de Schrödinger Dependente do Tempo (geral)
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
Equação de Schrödinger Dependente do Tempo (geral)
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
Equação de Schrödinger Dependente do Tempo (geral)
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
Equação de Schrödinger Dependente do Tempo (geral)
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
ou
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Princípio primeiro: conservando a energia[editar | editar código-fonte]
Observação: a compreensão do que se segue exige o conhecimento das definições de: energia, energia interna, energia térmica, temperatura (absoluta), energia potencial, pressão, volume, calor e trabalho. Solicita-se a leitura dos artigos específicos caso estes conceitos não se mostrem familiares.
De acordo com o princípio da Conservação da Energia, a energia não pode ser criada nem destruída, mas somente transformada de uma espécie em outra. O primeiro princípio da termodinâmica estabelece uma equivalência entre o trabalho e o calor trocados entre um sistema e seu meio exterior no que se refira à variação da energia interna do sistema.
Considere um sistema e sua vizinhança, em uma situação tal que uma certa quantidade de calor Q tenha atravessado a fronteira comum aos dois (devido à diferença de temperaturas entre ambos). Considere também que a fronteira comum entre os sistemas se mova neste processo, implicando em energia trocada na forma de trabalho entre ambos. Neste caso a variação na energia interna do sistema em foco é expressa por:
A expressão acima representa analiticamente o primeiro princípio da termodinâmica, cujo enunciado pode ser:
" a variação da energia interna de um sistema é igual à diferença entre o calor e o trabalho trocados pelo sistema com o meio exterior."
Considerando-se para fins ilustrativos um sistema composto por um gás com apenas movimentos translacionais (isso é, monoatômico) e sem interação potencial entre partículas, a variação de energia interna pode ser determinada por
onde n é o número de mols do gás, R é a constante dos gases,
a temperatura final e
a temperatura inicial do gás.
Repare que para um gás ideal a variação em sua energia interna está associada apenas à variação em sua temperatura. Transformações isotérmicas envolvendo um gás ideal implicam portanto que o trabalho W realizado pelo sistema sobre a vizinhança iguala-se em módulo ao calor que entra no sistema oriundo da vizinhança.
Para a aplicação do primeiro princípio de termodinâmica devem-se respeitar as seguintes convenções[Ref. 11][Ref. 3]:
- Q > 0: calor é recebido pelo sistema oriundo de sua vizinhança.
- Q < 0: calor cedido pelo sistema à vizinhança.
- W > 0: volume do sistema aumenta; o sistema realiza trabalho sobre a vizinhança (cujo volume diminui).
- W < 0: volume do sistema diminui; o sistema recebe energia na forma de trabalho oriunda de sua vizinhança (cujo volume aumenta).
> 0: a energia interna do sistema aumenta.
< 0: a energia interna do sistema diminui.
É muito comum associar-se de forma errônea o aumento da energia interna em um sistema a um aumento em sua temperatura. Embora esta relação mostre-se verdadeira para a maioria dos sistemas, ao rigor da análise esta associação não procede. Alguns exemplos bem simples, como a combustão de vapor de gasolina e oxigênio em um cilindro de automóvel - que por ser muito rápida, pode ser considerada um processo adiabático - ou uma simples mistura de sal e gelo, mostram que não há uma relação estrita entre energia interna e temperatura, mas sim entre energia térmica e temperatura.
Para problemas que envolvem gases e sólidos a expressão matemática utilizada para expressar pressão é dada por:
ou
Onde:
é a pressão;
é a força normal a superfície;
é a área total onde a força é aplicada.
Para líquidos, a pressão pode ser escrita como:
ou
Onde:
é a pressão em um ponto específico ou a diferença entre a pressão inicial e final do sistema;
é a massa específica do líquido. ;
é a aceleração gravitacional;
é a profundidade do ponto dentro do líquido.
Podemos descobrir a pressão de um gás a determinada temperatura e volume através da equação do gás ideal:
Onde:
é a pressão do gás;
é o número de mols do gás;
é a constante dos gases perfeitos;
é o volume do gás.
A pressão é uma grandeza escalar. O vetor força muda conforme a orientação do plano onde é aplicado, porém o valor da pressão permanece o mesmo, ou seja, é independente de direção. O vetor força que caracteriza a pressão pode ser relacionado ao vetor da força normal, uma vez que ambos são perpendiculares à superfície. [1]
a pressão altera a massa, a energia, o tempo e o espaço, geometria e inércia, interações de íons e eletrons e transformações, decaimentos e transmutações, emissões e absorções, condutividades, ondas e partículas, saltosn quântico, momentuns dinâmico e eletromagnético. muda isótopos e estruturas amorfas e cristalinas, difrações e refrações, estados físicos e estados de Graceli, estados e momentum quântico, e outros.
Equação de Schrödinger Dependente do Tempo (geral)
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Decaimento exponencial
Saltar para a navegaçãoSaltar para a pesquisa
Numa substância radioativa, cada átomo tem uma certa probabilidade, por unidade de tempo de se transformar num átomo mais leve emitindo radiação nuclear no processo. Se
representa essa probabilidade, o número médio de átomos que se transmutam, por unidade de tempo, é
, em que
é o número de átomos existentes em cada instante.[1] O número de átomos transmutados por unidade de tempo é também igual a menos a derivada temporal da função 
A massa dos correspondentes átomos,
, é diretamente proporcional a
e assim obtemos a seguinte equação diferencial
onde
é uma constante, designada de constante de decaimento. A solução geral desta equação é uma função que diminui exponencialmente até zero
e a solução única para a condição inicial
no instante inicial é (figura ao lado)
A definição de meia-vida da substância define-se como o tempo necessário para a massa diminuir até 50% do valor inicial; a partir da solução obtida temos
Quanto maior for a constante de decaimento
, mais rápido diminuirá a massa da substância (ver figura).
Uma substância radioativa presente em todos os organismos vivos é o carbono 14 que decai transformando-se em azoto, com uma meia-vida de aproximadamente 5580 anos. O conteúdo de
em relação ao
de qualquer organismo vivo é o mesmo.
A razão é a seguinte: no fim da cadeia alimentar dos seres vivos estão os organismos que absorvem o carbono diretamente da atmosfera e portanto a relação
nos seres vivos é a mesma que na atmosfera. Na atmosfera esta relação é estável há muitos anos; os organismos mortos, em processo de decomposição perdem
como resultado do decaimento radioativo e não o regeneram através da dieta. O azoto que a atmosfera ganha dos organismos em decomposição é transformado novamente em
pelos raios cósmicos, nas camadas superiores. Uma comparação do conteúdo de carbono 14 de um organismo morto, por exemplo madeira obtida de uma árvore, com o conteúdo existente num organismo vivo da mesma espécie, permite determinar a data da morte do organismo, com uma boa precisão quando o tempo envolvido for da ordem de grandeza da meia-vida do carbono 14.[1]
- xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD
ou
- xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD - xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD
ou- xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD - xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD
Pressão (símbolo
) é a relação entre uma determinada força e sua área de distribuição.
O termo pressão é utilizado em diversas áreas da ciência como uma grandeza escalar que mensura a ação de uma ou mais forças sobre um determinado espaço, podendo este ser líquido, gasoso ou mesmo sólido. A pressão é uma propriedade intrínseca a qualquer sistema, e pode ser favorável ou desfavorável para o homem: a pressão que um gás ou vapor exerce sobre a pá de uma hélice, por exemplo, pode ser convertida em trabalho. Por outro lado, a pressão da água nas profundezas do oceano é um dos grandes desafios para os pesquisadores que buscam novas fontes de recursos naturais.[1]
Expressões matemáticas[]
Para problemas que envolvem gases e sólidos a expressão matemática utilizada para expressar pressão é dada por:
ou
Onde:
é a pressão;
é a força normal a superfície;
é a área total onde a força é aplicada.
Para líquidos, a pressão pode ser escrita como:
ou
Onde:
é a pressão em um ponto específico ou a diferença entre a pressão inicial e final do sistema;
é a massa específica do líquido. ;
é a aceleração gravitacional;
é a profundidade do ponto dentro do líquido.
Podemos descobrir a pressão de um gás a determinada temperatura e volume através da equação do gás ideal:
Onde:
é a pressão do gás;
é o número de mols do gás;
é a constante dos gases perfeitos;
é o volume do gás.
A pressão é uma grandeza escalar. O vetor força muda conforme a orientação do plano onde é aplicado, porém o valor da pressão permanece o mesmo, ou seja, é independente de direção. O vetor força que caracteriza a pressão pode ser relacionado ao vetor da força normal, uma vez que ambos são perpendiculares à superfície. [1]
Unidades[editar | editar código-fonte]
Sendo a definição de pressão: força por unidade de área, analogamente a unidade será newton por metro quadrado (N/m2). Em homenagem a Blaise Pascal, por suas diversas contribuições relativas à pressão, pressão mecânica e hidrostática, a unidade no Sistema Internacional para medir pressão é o Pascal (Pa).
Em geral, a unidade é encontrada na forma de milhar(kPa), uma vez que as medidas de pressão geralmente apresentam valores altos dessa unidade. A pressão exercida pela atmosfera ao nível do mar, por exemplo, corresponde a aproximadamente 101.325 Pa (pressão normal), e esse valor é normalmente associado a uma unidade chamada atmosfera padrão(atm).
Outras unidades[editar | editar código-fonte]
- Atmosfera é a pressão correspondente a 0,760m (760mm) de Mercúrio, com densidade de 13,5951 g/cm³ a uma aceleração gravitacional de 9,80665 m/s².
- Bária é a unidade de pressão no Sistema CGS de unidades e vale uma dyn/cm².
- Bar é um múltiplo da bária, onde 1 bar = 106 bárias.
- PSI (pound per square inch), libra por polegada quadrada, é a unidade de pressão no sistema inglês/americano, onde 1 psi = 0,07 bar.
- milibar ou hectoPascal é um multiplo do pascal, onde 1 hPa = 100 Pa. Geralmente utilizado na meteorologia.
- mmHG, também chamada de Torricelli, é uma unidade de pressão antiga inventada com o surgimento do barômetro, onde 1 mmHG = 133,332 Pa.
- mH2O é uma unidade relativa a pressão necessária para elevar em um metro o nível de uma coluna de água em um barômetro, sendo 1 mH2O = 9806,65 Pa.
- kgf/cm² representa o peso normal do ar ao nível do mar por cm², sendo 1 kgf/cm² = 98066,52 Pa.
| Nomenclatura | Atmosfera | Pascal | Bária | Bar | milibar ou hectopascal | mmHg | mH2O | kgf/cm² |
|---|---|---|---|---|---|---|---|---|
| Unidade | Atm | Pa | Ba | Bar | mBar / hPa | mmHg | mH2O | kgf/cm² |
| Atmosfera | 1,01325×105 | 1,01325×106 | 1,01325 | 1013,25 | 760,0 | 10,33 | 1,033 | |
| Pascal | 9,869×10-6 | 10 | 10-5 | 0,01 | 7,501×10-3 | 1,020×10-4 | 1,019×10-5 | |
| Bária | 9,869×10-7 | 0,1 | 10-6 | 0,001 | 7,501×10-4 | 1,020×10-5 | 1,020×10-2 | |
| Bar | 0,9869 | 100000 | 1000000 | 1000 | 750,1 | 10,20 | 1,020 | |
| mBar ou hPa | 9,869×10-4 | 100 | 1000 | 0,001 | 0,7501 | 1,020×10-2 | 10,20 | |
| mmHg | 1,316×10-3 | 133,3 | 1333 | 1,333×10-3 | 1,333 | 1,360×10-2 | 13,60 | |
| mH2O | 9,678×10-2 | 9807 | 9,807×104 | 9,807×10-2 | 98,06 | 73,56 | 0,100 | |
| kgf/cm² | 0,968 | 9,810×104 | 9,810×105 | 0,9810 | 981,0 | 735,8 | 10,00 |
Instrumentos de medição[editar | editar código-fonte]
Manômetro[editar | editar código-fonte]
O manômetro é um instrumento utilizado para medir a pressão de um líquido ou de um gás.
A experiência pode ser feita de várias maneiras, inclusive o arranjo dos equipamentos pode variar. A técnica para medir a pressão de um fluido consiste em manter o líquido(geralmente mercúrio, devido a sua alta densidade) dentro de um recipiente com duas extremidades que permitam manejar a pressão na entrada e a sua abertura ou fechamento. Nessas extremidades podemos colocar gases ou outros líquidos, dependendo da experiência em questão. De acordo com a altura da coluna de líquido, pode-se estimar a pressão que ela exerce sobre a pressão de entrada (geralmente é a pressão atmosférica) utilizando a equação que relaciona altura e densidade do líquido à pressão que ele exerce no meio.
Outro tipo de manômetro mais sofisticado consiste em um tubo flexível com uma extremidade ligada a um ponteiro e a outra aberta para a passagem de determinado gás ou líquido. Conforme o recipiente enche, a pressão no tubo deforma a geometria do recipiente, que por sua vez acaba deslocando o ponteiro. Esse tipo de manômetro tem um caráter mais prático, e o outro mais didático.[3]
Piezômetro[editar | editar código-fonte]
O piezômetro é um aparelho utilizado para medir a pressão que a água (ou sua ausência) exerce na composição do solo. O equipamento consiste em um tubo no qual uma extremidade é conectada a um recipiente com algum líquido(geralmente mercúrio, devido a sua alta densidade) e a outra é revestida por algum material poroso, como uma esponja, por exemplo. O tubo é então preenchido com água, e o líquido de medição é separado da água por vácuo ou gás. Quando o solo está seco, a água do tubo é absorvida pela terra e a coluna de líquido de medicação sobe. Quando o solo está muito umido o processo contrário ocorre, enchendo completamente o tubo com água e diminuindo a coluna de líquido.
Com a equação para medir pressão em líquidos podemos calcular a poro-pressão(ou carga piezométrica) do solo. Esse tipo de medida é muito útil, pois permite monitorar a umidade do solo e evitar situações extremas, como deslizamentos devido a erosão do solo.[4]
Barômetro[editar | editar código-fonte]
Barômetro feito com uma coluna de mercúrio.
O barômetro é um equipamento que nos permite calcular algumas grandezas indiretamente através da pressão.
O primeiro barômetro consistia em um tubo com um lado fechado e o outro fixado em algum recipiente, de forma a permitir a passagem de algum fluido desse recipiente para dentro do tubo. Adicionando ao pequeno reservatório algum líquido(geralmente mercúrio, devido a sua alta densidade) para que este sirva como um indicador. Conforme sabemos da hidrostática, um líquido exerce pressão igual para todos os lados. Assim sendo, quando a parte externa do recipiente for submetida a determinada pressão, o líquido vai exercer a mesma pressão na parte interna do tubo. Caso essa pressão externa seja maior que a interna, a coluna do líquida vai subir a fim de nivelar o sistema. Caso contrário, a coluna desce e a parte de cima fica com vácuo.
Partindo da equação que relaciona a diferença de altura do líquido com a sua pressão, e sabendo qual a pressão interna do tubo, podemos calcular quanto vale a pressão externa em qualquer lugar. Através dessa experiência (conhecida como experiência de Torricelli) podemos determinar a altura do local onde estamos com relação ao nível do mar. Sabe-se que uma coluna de mercúrio, por exemplo, mede 76cm ao nível do mar, e que esse valor diminui quando alcançamos altitudes maiores, pois a pressão atmosférica é menor.[3]
Pressão em gases[editar | editar código-fonte]
Segundo a teoria cinética dos gases, um gás é composto por um grande número de moléculas que se movimentam muito rápido e de forma aleatoria, causando frequentes colisões entre as moléculas do gás e com as paredes de qualquer tipo de recipiente. Essas moléculas apresentam um certo momento, dado pelo produto entre a massa e a velocidade da molécula. No instante em que uma molécula colide com uma parede, as moléculas transmitem momento à superfície, e como consequencia produzem uma força perpendicular à essa superfície. A soma de todas essas forças oriundas de colisões em uma determinada superfície, dividida pela área da mesma, resulta na pressão exercida por um gás em um determinado recipiente.[1]
Algumas aplicações da pressão nos gases podem ser observadas na utilização da pressão que o vapor da água exerce sobre determinada superfície quando confinado em um espaço fechado. Esse processo pode ser encontrado em usinas nucleares, onde uma pá gira com a pressão do vapor e converte essa energia em eletricidade. Além disso, observamos a pressão em gases sendo utilizada diariamente no freio do ônibus, por exemplo. O freio de veículos pesados conta com um sistema que usa ar comprimido para cessar o movimento.
Pressão em fluidos[editar | editar código-fonte]
Um corpo no estado líquido é caracterizado por apresentar uma distância entre suas moléculas que permite ao corpo adequar-se ao ambiente em que se encontra. As características da pressão nos líquidos é semelhante a que encontramos nos gases: o líquido exerce pressão para todos os lados de um recipiente e em qualquer corpo que for imerso nele.
Segundo o princípio de Pascal, ao exercermos pressão em um fluido confinado em um recipiente, essa é transmitida integralmente a todos os ponto desse recipiente. Uma experiências que pode ajudar a compreender esse princípio é a dos vasos comunicantes: Ao armazenarmos algum líquido em uma estrutura com colunas de volumes diferentes podemos observar que o líquido preenche todas as colunas a mesma altura, desconsiderando as diferenças de volume. Isso prova que o fluido espalha-se uniformemente, portanto, exerce pressão igual em todas as direções.[1] Essa demonstração foi muito importante para o surgimento dos sistemas hidraulicos, essenciais nos dias de hoje.
A pressão em líquidos tem algumas diferenças da pressão nos gases. Com os gases, quanto maior a altitude menor a pressão, já com os líquidos, quanto maior a profundidade, maior a pressão. Isso é facil de ser evidenciado - basta mergulhar e automaticamente sentimos a pressão aumentando. É instintivo pensar que ao furar uma garrafa de água, a vazão de um furo na sua base será maior do que a de um furo lateral(considerando que ambos tem a mesma área). Essa diferença é devida a maior pressão no fundo da garrafa, devido a altura da coluna de água.[3]
Outra característica marcante da pressão nos líquidos e demais estados da matéria é sua propriedade de alterar os outros elementos do conjunto: temperatura, pressão e volume. Podemos perceber isso ao cozinhar feijão em uma panela de pressão: o vapor da água aumenta a pressão no interior da panela, e isso provoca uma alteração do ponto de ebulição da água, que passa a ferver acima dos 100°C. Isso agiliza o processo de cozimento do grão do feijão, que seria muito mais lento se não fosse o advento da panela de pressão.
Pressão em sólidos[editar | editar código-fonte]
Existe uma área da física que aborda o assunto pressão com restrição aos corpos rígidos. Esse assunto é estudado profundamente devido as sua extrema importância. A tensão mecânica, como é chamada, estuda todos os tipos de pressões e tensões que são encontradas dentro ou sobre um corpo material, sendo elas:
- Tensão de tração;
- Tensão de compressão;
- Tensão de cisalhamento;
- Tensão elástica;
- Tensão plástica;
- Tensão de escoamento.[5]
Diferente da pressão nos fluidos, em corpos rígidos os átomos não têm tanta liberdade e acabam tendo seus movimentos restringidos, ou seja, não exercem pressão ao seu redor. Se pegarmos uma pedra e largarmos em uma superfície, a única pressão que a pedra exerce no sistema é a resultante de sua força peso e da área da sua base, que pressiona a mesa. Portanto, percebemos que a pressão dos sólidos é ocasionada necessariamente por uma força(a própria força peso, por exemplo) que usa o sólido como recurso para ampliar sua força e área. Este conjunto de informações é suficiente para refletir sobre as consequências dessas tensões no ambiente em que vivemos.
Uma aplicação para essas observações são os patins. A patinação sobre o gelo utiliza dos artifícios da pressão para proporcionar menos aderência aos praticantes do esporte. Vamos entender por quê:
O metal utilizado como lâmina na sola do sapato de patinação é muito fino, e sua área é muito pequena frente ao peso do patinador. Como a pressão é inversamente proporcional a área de abrangência da força, quanto menor o metal mais pressão será feita sobre o gelo.
Assim como a água, o gelo sofre algumas mudanças de características. A que estamos interessados no momento revela que o gelo sobre os patins está sobre uma pressão tão intensa que acaba trocando de estado da matéria e vira liquido mesmo a temperaturas abaixo de zero. Graças a isso, os patins utilizam a força peso do patinador para derreter uma fina camada de gelo em baixo da lâmina quando está deslizando, aumentando sua velocidade e lubrificando o caminho.[1]
Alguns fenômenos naturais como os glaciares também tem alguns fatores relacionados a pressão que os cubos de gelo exercem um sobre o outro, fazendo com que o gelo mais em baixo derreta e o gelo que está por cima,fazendo uma trilha de água e escoe os blocos até algum rio ou oceano(ou até que sequem).
efeitos Graceli de piezoeletricidade
A piezoeletricidade tem também efeitos proporcionais sobre magnetismo, condutividade térmica e elétrica, dilatações, interações interna e transformações de estruturas, difrações e refrações, emissões e absorções de partículas e energias, momentum térmico, elétrico, dinãmico, magnético, e outros fenômenos. ondas e saltos quântico, estado quântico de partículas, momentum quântico.
A piezoeletricidade tem também efeitos proporcionais sobre magnetismo, condutividade térmica e elétrica, dilatações, interações interna e transformações de estruturas, difrações e refrações, emissões e absorções de partículas e energias, momentum térmico, elétrico, dinãmico, magnético, e outros fenômenos. ondas e saltos quântico, estado quântico de partículas, momentum quântico.
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Piezoeletricidade é a capacidade de alguns cristais gerarem tensão elétrica por resposta a uma pressão mecânica. O termo piezoeletricidade provém do grego piezein, que significa apertar/pressionar. Referente à geração de corrente elétrica, juntou-se a designação eletricidade, de modo que piezoeletricidade é interpretado como a produção de energia elétrica devido à compressão sobre determinados materiais.
Mecanismo
O efeito piezoelétrico é entendido como a interação eletromecânica linear entre a força mecânica e o estado elétrico (forças de Coulomb) em materiais cristalinos (cerâmicos, polímeros).
O efeito piezoelétrico é um processo reversível em que os materiais exibem o efeito piezoelétrico direto (a geração interna de carga elétrica resultante de uma força mecânica aplicada), mas também exibem o efeito piezoelétrico reverso (a geração interna de uma tensão mecânica resultante de um campo elétrico aplicado). Por exemplo, os cristais de titanato zirconato de chumbo irão gerar piezoeletricidade mensurável quando a sua estrutura estática é deformada por cerca de 0,1% da dimensão inicial. Por outro lado, esses mesmos cristais mudam cerca de 0,1% da sua dimensão estática quando um campo elétrico externo é aplicado ao material. Como exemplo, o efeito piezoelétrico inverso é usado na produção de ondas de ultrassom.[1]
Cristais[editar | editar código-fonte]
Utilizando argumentos referentes à simetria, o efeito piezoelétrico não existe em materiais que apresentam simetria central, e desta forma, podem ser polarizados, ou seja, a piezoeletricidade pode ser explicada pela assimetria de polarização iônica. Porém, elementos puros, tais como selênio (Se) e telúrio (Te) também exibem a propriedade de piezoeletricidade. Nestes casos, a polarização elétrica induzida é atribuída à distribuição eletrônica, que é alterada pela ação externa.
Considerando as trinta e duas classes de cristais catalogadas, 21 não são centrossimétricas (não possuem centro de simetria); vinte destes exibem piezoeletricidade direta; dez destes representam as classes de cristal polares, que mostram uma polarização espontânea, sem estresse mecânico devido a um momento de dipolo elétrico permanente. Se o momento de dipolo puder ser revertido por meio da aplicação de um campo elétrico externo, então o material é considerado ferroelétrico.
Para cristais polares, para os quais o momento de dipolo P diferente de zero se mantém sem se aplicar uma carga mecânica, o efeito piezoelétrico manifesta-se alterando a magnitude ou a direção do vetor momento de dipolo ou ambos. Para os cristais não-polares, mas piezoelétricos, a polarização diferente de zero é apenas induzida pela aplicação de uma carga mecânica. Para eles, a tensão pode ser imaginada para transformar o material a partir de uma classe de cristal não polar (P = 0) para uma polar, para a qual P ≠ 0.
A maioria dos cristais não possui propriedades piezoelétricas. O mais importante cristal natural que possui esta propriedade é o quartzo. Além deste, pela facilidade de sintetização, os cristais utilizados são cerâmicas à base de, por exemplo, titanato de bário ou zirconato de chumbo.[2]
Descrição matemática[editar | editar código-fonte]
A piezoelectricidade é uma combinação de efeitos do comportamento elétrico do material:[3]
Nessa equação, D é o deslocamento elétrico, ε é a permissividade elétrica, E representa o campo elétrico, 'e' representa a constante de stress e S é a tensão longitudinalaplicada.
Quando a aplicação de uma força F, o centro de equilíbrio das cargas positivas e negativas é deslocado, causando a polarização do material, e o consequente deslocamento de corrente.
Similarmente, considerações para o caso quando um campo elétrico E é aplicado mostram que um termo referente a stress adicional, -eE, aparece. Tem-se então a Lei de Hooke, T = cS:
Se as cargas de moléculas positivas e negativas possuem magnitudes diferentes, há uma polarização espontânea. Se uma molécula possui um momento de dipolo, este material exibe uma polarização iônica. Já no caso onde há somente um tipo de elemento, mas este é polarizável, temos o efeito de polarização eletrônica.
A piezoeletricidade apresenta relação entre propriedades elétricas (E, D) e mecânicas (S, T). O modelo de um sólido piezoelétrico apresenta quatro diferentes relações entre variáveis. Assumimos que
e
. Assim, temos
onde todos os outros efeitos, tais como magnéticos e térmicos, assim como termos não-lineares, são ignorados.
Considerando o caso onde ao campo elétrico é aplicado sobre o material piezoelétrico (ao se colocar um material piezoelétrico num campo elétrico externo, as cargas elétricas da rede cristalina interagem com o mesmo e produzem tensões mecânicas), os segundos termos das equações acima enunciam o stress ou a tensão elétrica no material. Se o material não está confinado mecanicamente, a tensão será uma força de reação a força imposta pelo stress. Desta forma, a tensão altera a relação D e E, e assim a medição das propriedades elétricas dependentes das propriedades mecânicas. Do mesmo modo, uma tensão elétrica alterará a medição de propriedades mecânicas dependentes das propriedades elétricas. Em ambos os casos, isso demonstra a essência do acoplamento piezoelétrico. Para uma análise mais detalhada, deve-se comparar diferentes materiais piezoelétricos para identificar sua performance. Fatores como a eficiência do acoplamento a vibrações mecânicas, vibrações com campos elétricos externos, direção de aplicação do campo elétrico externo e demais, são resultados a serem considerados.
Num material piezoelétrico também interessam os seguintes coeficientes:
- Coeficiente de acoplamento eletro-mecânico:
- Coeficiente Dielétrica: esta grandeza relaciona a quantidade de carga que uma das faces do cristal pode armazenar em relação à carga total armazenada, e que pode ser dissipada como corrente real. Existem duas constantes dielétricas: uma é a constante para o cristal livre e outra para o cristal bloqueado:
Aplicações[editar | editar código-fonte]
O fenômeno piezoelétrico é encontrado em aplicações úteis, como a produção e detecção de som, a geração de tensões elevadas, geração de frequências eletrônicas, microbalanças e concentração ultrafina de conjuntos ópticos. É também a base de uma série de técnicas científicas instrumentais com resolução atômica (microscopia de varredura de sonda), e os usos cotidianos, como atuando como fonte de ignição para isqueiros de faísca elétrica, microfones, e as famosas "pílulas" ou cápsulas de guitarra (embora sejam utilizadas em guitarras acústicas, baixos, violoncelos e outros), que representam uma espécie de microfone. O projeto mais arrojado; porém, refere-se à utilização do materiais piezoelétricos em ruas e estradas, onde a pressão causada pela movimentação dos carros podem ser usados para gerar eletricidade de forma barata.
As transformações que ocorrem em cada material:
- Exemplos de transformações mecânico-elétrica
- Medidor de pressão;
- Microfone;
- Isqueiro elétrico;
- Alarme antifurto;
- Agulha do toca-discos.
- Exemplos de transformações elétrico-mecânicas
- Ultrassom;
- Nebulizadores;
- Aparelhos elétricos contra mosquitos;
- Alto-falantes;
Sensores piezoelétricos[editar | editar código-fonte]
Os sensores piezoelétricos mensuram determinados parâmetros físicos, que estão na forma de tensão mecânica ou variações de cargas elétricas. Estes são utilizados para se medir pressão cardíaca e registrar os batimentos cardíacos, emitir ou recepcionar ultrassons a fim de visualizar órgãos humanos através da conversão da energia proveniente das ondas emitidas pelo funcionamento dos órgãos que faz vibrar uma lâmina de material piezoelétrico. Resumidamente, quando se aplica tensão mecânica, há o aparecimento de um potencial elétrico; quando a tensão aplicada for de natureza elétrica, temos uma deformação física.
O princípio de funcionamento de um sensor piezoelétrico reside no fato de que dada dimensão física, pela ação de uma força, é deformada. Dependendo da concepção de um sensor, "modos" diferentes de polarização sobre o elemento piezoelétrico podem ser usados (eles podem ser comprimidos transversalmente, longitudinalmente, ou pela ação de cisalhamento).
A detecção de variações de pressão sob a forma de ondas sonoras é a aplicação mais comum do sensor. Por exemplo, Microfonepiezoelétricos, onde ondas sonoras batem no material piezoelétrico, criando uma tensão que varia. Captadores piezoelétricos funcionam pelo mesmo princípio em guitarras electro-acústicas.
Sensores piezoelétricos mais acurados são utilizados com som de alta freqüência (acima de 20000 Hz) em transdutores de ultrassom para imagens médicas. Cada transdutor possui uma freqüência de ressonância natural, tal que quanto menor a espessura do cristal que o compõem, maior será a sua frequência de vibração e melhor será o sinal que este gerará ou será capaz de emitir.
Para várias técnicas de detecção, o sensor pode atuar tanto como um sensor ou então como captador, sendo então preferencialmente chamado transdutor (termo preferido para descrever quando o dispositivo funciona com ambas aplicações). A maioria dos dispositivos piezoelétricos têm esta propriedade de reversibilidade, sendo que desta forma, materiais piezoelétricos são indiscriminadamente chamadas transdutores. Transdutores de ultrassom, por exemplo, pode projetam ondas de ultrassom no corpo humano, recebem a reverberação desta onda, com frequência diferente da emitida, convertendo-a em sinal elétrico (tensão).
A carga induzida
num material piezo é proporcional a força
aplicada.
onde
é uma constante piezoelétrica, com unidade Coulomb por Newton.
Os materiais piezoelétricos possuem resistência muito elevada, mas não infinita. Se uma deflexão for aplicada sobre o material, uma corrente infinitesimal seguirá por um circuito, preservando o sinal elétrico gerado pelo piezoelétrico, sendo que a voltagem gerada pode ser mensurada ou ativar outro sensor piezoelétrico deste circuito. Deve-se ressaltar que o sinal decai exponencialmente pela resistência do material piezo somado a resistência externa do circuito.[4]
Padrão de frequência[editar | editar código-fonte]
Materiais piezoelétricos são empregados em relógios como osciladores. Um cristal de quartzo, que utiliza uma combinação dos efeitos de piezoeletricidade direta e inversa para gerar uma série regular de impulsos elétricos cronometrado, que marcam o tempo. O cristal de quartzo (como qualquer material elástico) tem uma frequência natural definida com precisão (devido a sua forma e tamanho), e este é utilizado para estabilizar a frequência de uma tensão elétrica periódica aplicada ao cristal.
O mesmo princípio é aplicado em todos os transmissores e receptores de rádio, e em computadores onde ele cria um pulso de clock. Ambos costumam usar multiplicadores de frequência para atingir faixas gigahertz.
Sonar[editar | editar código-fonte]
Pelos estudos de Leonardo DaVinci no século XV, temos uma descrição simplista, porém clara, da ação de um sonar:
Qualquer outra descrição difere somente em detalhes.
O estudo da natureza das ondas sonoras na água e o modo como elas se propagam permitiu com que se construíssem sistemas acústicos para observação e mapeamento de solos embaixo d'água. Sensores capazes de identificar a energia de ondas acústicas embaixo d'água são chamados Hidrofone, feitos a partir de materiais piezoelétricos.
Os sonares funcionam pela propagação de ondas acústicas (criadas através de sinais digitais eletrônicos) sendo que ele também recebe a volta o sinal acústico que emitiu. Construído com materiais piezoelétricos, este utiliza da energia das ondas para fazer vibrar (sonar) uma película fina que converte a energia proveniente das ondas reverberadas novamente em pulsos elétricos, mas agora com outras intensidades, que são então decodificados em um computador, tratadas, e gerar imagens de regiões abaixo d'água.
O método acústico na fabricação de sonares, o qual não envolve transformações eletroacústicas, representa o método mais rudimentar (baseado na descrição de DaVinci), sendo que este foi amplamente utilizado durante a Primeira Guerra Mundial. Virtualmente, todos os sistemas de sonares, os quais a energia é restrita a forma acústica são utilizados ainda para localizar um alvo quando este é uma fonte primária de som. Neste caso, capta-se apenas a energia proveniente da propagação destas ondas, para então transformá-las em sinas elétricos (através de materiais piezoelétricos) a serem interpretados.
Sonares eletroacústicos são muito mais utilizados, com uma gama maior de aplicações. Porém, para operar, o sonar eletroacústico deve estar parado, muito próximo do local a ser mapeado. Além disso, para ser interpretado, o som deve estar na faixa audível; quando a energia acústica é convertida em energia elétrica, uma vasta gama de equipamentos deve ser aplicada para criar um sinal com características específicas mais convenientes para que os dados possam ser lidos. Neste momento, transdutores como microfones, alto-falantes e fones-de-ouvido (que são excelentes sistemas quando utilizados com deslocamento de massas de ar) se mostram ineficientes com a energia das camadas de água, uma vez que a impedância acústica específica da água (magnitude da resposta a um estímulo) é 4000 vezes maior do que a do ar.
Os sonares eletroacústico são então sistemas muito sensíveis, e desta forma, também são muito suscetíveis a distúrbios e interferências na recepção do sinal. Este tipo de sonar, portanto, ainda é muito estudado e muitos materiais piezoelétricos são testado para que se consiga a melhor relação entre as dificuldades apresentadas por mares e oceanos e pela tecnologia empregada.
Estadologia Graceli – 4. E princípio entrópico tempo / instabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Postado por physicists Ancelmo Luiz Graceli às 02:43
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Postado por cientista e filósofo
Emissão estimulada + entropia no sistema decad. e categ. Graceli
quarta-feira, 30 de janeiro de 2019
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Em óptica, a emissão estimulada é o processo pelo qual um átomo, quando perturbado por um fóton que incide sobre ele, emite um outro fóton. O fóton causador da perturbação não é destruído no processo e o segundo fóton é criado com a mesma fase, frequência, polarização e direção do fóton original. A emissão estimulada é essencialmente um fenômeno da mecânica quântica que pode ser compreendido a partir do princípio da conservação da energia. O processo pode ser pensado como uma amplificação óptica e é a base do funcionamento do laser e do maser.
A interação dos elétrons entre si e os campos eletromagnéticos constituem a base da maior parte de nosso entendimento de químicae física. Os elétrons possuem energia que depende o quão longe eles estão em média do núcleo de um átomo. O Princípio de Exclusão de Pauli força alguns elétrons estarem mais longe do núcleo do que outros (que é porque todos os elétrons em um átomo não simplesmente ocupam o orbital 1s). Quando os elétrons absorvem energia da luz (fótons) ou calor (fônons), eles movem-se para mais longe do núcleo atômico, mas somente é permitido que eles absorvam energia que equivalha à diferença entre níveis de energia específicos.
Quando um elétron é excitado, ele não ficará desta maneira para sempre. Em média existe um tempo de vida para alguns níveis de energia particulares depois que metade dos elétrons inicialmente neste estado terão decaído para um estado mais baixo. Quando tal decaimento ocorre, a diferença de energia entre o nível que o elétron estava e o novo nível que ele estará deve ser liberada como um fóton ou um fônon. Quando um elétron decai ao acaso depois de um certo intervalo de tempo,é dito ser devido a uma "emissão espontânea". A fase associada ao fóton que é emitido é aleatória e tem que estar de acordo com algumas ideias da mecânica quântica no que se refere ao estado interno do átomo. Se um grupo de elétrons estavam por alguma razão em um estado excitado e então eles relaxam, a radiação resultante seria muito limitada espectralmente (somente um comprimento de onda da luz estaria presente), mas os fótons individuais não estariam em fase entre eles. Isto é também chamado fluorescência.
Outros fótons poderão afetar um estado do átomo. As variáveis da mecânica quântica mencionadas acima serão modificadas. Especificamente o átomo atuará como um pequeno dipólo elétrico que oscilará com o campo externo. Uma das consequências desta oscilação é que ela estimula os elétrons a decair para estados de energia mais baixos. Quando isto ocorre devido à presença de outros fótons, o fóton libertado está em fase com outros fótons e na mesma direção que os mesmos. Isto é conhecido como emissão estimulada.
A emissão estimulada pode ser modelada matematicamente pela consideração de que um átomo que pode estar em dois estados de energia eletrônicos, o “estado fundamental” (1) e o “estado excitado” (2), com energias E1 e E2, respectivamente.
Se o átomo está no estado excitado, ele pode decair para o estado fundamental pelo processo de emissão espontânea, liberando a diferença de energia entre os dois estados como um fóton. O fóton terá frequência ν e energia hν, dada pela equação de Planck
onde h é constante de Planck.[1]
Alternativamente, se o estado excitado do átomo é perturbado pelo campo elétrico de um fóton com frequência ν, ele pode libertar um “segundo” fóton da mesma frequência, em fase com o primeiro fóton. O átomo decairá novamente para o estado fundamental. Este processo é conhecido como emissão estimulada.
Em um grupo de átomos semelhantes, se o número de átomos no estado excitado é dado por “N”, a razão em que a emissão estimulada ocorre é dada por:
,
onde B21 é uma constante de proporcionalidade para esta transição particular neste átomo particular (referência em coeficiente B de Einstein , e ρ(ν)é a densidade de radiação dos fótons de frequência ν. A razão da emissão é desta forma proporcional ao número de átomos no estado excitado,”N”, e a densidade dos fótons perturbadores.
O detalhe crítico da emissão estimulada é de que o fóton emitido é idêntico ao fóton estimulador em que ele tem a mesma frequência, fase, polarização, e direção de propagação. Os dois fótons, como resultado, são totalmente coerentes. É esta propriedade que permite a amplificação óptica ocorrer.
Embora mais diretamente relacionado à discussão de como o laser funciona, a emissão estimulada toca em alguns dos mais básicos conceitos em Física e a interação de luz e matéria. Ela é muito importante e é conhecimento chave para o entendimento específico da óptica e da Física em geral.
Função forma de linha espectral[editar | editar código-fonte]
Embora existam muitas formas de linhas possíveis, é comum para o modelo a função forma de linha espectral como uma distribuição de Lorentz:
onde
é a amplitude completa de uma máxima metade em Hertz.
Este modelo é geralmente válido tanto quanto
e
A função forma da linha, apesar da forma que ela toma, deve satisfazer a condição de normalização de alguma distribuição de probabilidade:
que a distribuição de Lorentz satisfaz.
O valor máximo da forma de linha lorentziana ocorre no centro da linha:
É também conveniente definir a função forma de linha normalizada:
que é adimensional, e que tem um valor máximo, também no centro da linha, de:
Emissão estimulada através da secção[editar | editar código-fonte]
A emissão estimulada através da secção (em metros quadrados) é
onde
- A21 é o coeficiente A de Einstein (em radianos por segundo),
- λé o comprimento de onda (em metros),
- n é o índice de refração do meio (adimensional), e
- g(ν) é a função forma de linha espectral (em segundos).
Amplificação Óptica[editar | editar código-fonte]
Sob certas condições, a emissão estimulada pode fornecer um mecanismo físico para a amplificação óptica . Uma fonte externa de energia estimula os átomos no estado fundamental para a transição para o estado excitado, criando o que é denominado inversão de população. Quando a luz de freqüência apropriada passa através do meio invertido, os fótons estimulam os átomo excitados a emitir fótons adicionais de mesma frequência, fase e direção, resultando em uma amplificação da intensidade de entrada. A inversão de população, em unidades de átomos por metro cúbico, é:
onde g1 e g2 são as degenerescências dos níveis de energia 1 e 2, respectivamente.
Equação do ganho de sinal pequeno[editar | editar código-fonte]
A intensidade (em watts por metro quadrado) da emissão estimulada é governada pela seguinte equação diferencial:
Agrupando os primeiro dois fatores, esta equação é simplificada como:
onde
é o coeficiente de ganho do pequeno sinal (em unidades de radianos por metro). Nós podemos resolver a equação diferencial usando separação de variáveis:
Integrando, nós encontramos:
ou
onde
é a intensidade óptica do sinal de entrada (em watts por metro quadrado).
Intensidade de saturação[editar | editar código-fonte]
A intensidade de saturação IS é definida como a intensidade de entrada em que o ganho do amplificador óptico cai para exatamente metade do ganho do sinal pequeno. Nós podemos considerar a intensidade de saturação como
onde
- h é constante de Planck, e
- τS é a constante tempo de saturação, que depende no tempo de vida da emissão espontânea das várias transições entre os níveis de energia relacionados à amplificação.
Equação de ganho Geral[editar | editar código-fonte]
A forma geral da equação de ganho, que aplica apesar de tudo da intensidade de entrada, deriva da equação diferencial geral para a intensidade I como função da posição z no meio ganho:
onde
é a intensidade de saturação. Para resolver, nós primeiro rearranjamos a equação em ordem para separar as variáveis, intensidade I e posição z:
Integrando ambos os lados, nós obtemos
ou
O ganho G do amplificador é definido como a intensidade óptica I na posição z dividida pela intensidade de entrada:
Substituindo esta definição na equação anterior , nós encontramos a equação de ganho geral:
Aproximação do sinal pequeno[editar | editar código-fonte]
No caso especial onde o sinal de entrada é pequeno comparado à intensidade de saturação, em outras palavras,
então a equação de ganho geral dá o ganho do sinal pequeno como
ou
que é idêntica à equação de ganho de sinal pequeno (ver acima).
Comportamento assintótico de sinal grande[editar | editar código-fonte]
Para sinais de entrada grandes, onde
o ganho aproxima-se da unidade
e a equação de ganho geral aproxima-se de uma assintótica linear.
Estadologia Graceli – 4. E princípio entrópico tempo / instabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Postado por physicists Ancelmo Luiz Graceli às 02:43
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
Ver artigo principal: Unidades de pressão

Ver artigo principal: Hidrostática
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
pressão mecânica + entropia quântica no sistema decadim. e categorial Graceli
sexta-feira, 1 de fevereiro de 2019
- xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD
ou
- xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD - xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD
ou- xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD - xx
= entropia reversível
xdecadimensionalxT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLlD
Pressão (símbolo
) é a relação entre uma determinada força e sua área de distribuição.
O termo pressão é utilizado em diversas áreas da ciência como uma grandeza escalar que mensura a ação de uma ou mais forças sobre um determinado espaço, podendo este ser líquido, gasoso ou mesmo sólido. A pressão é uma propriedade intrínseca a qualquer sistema, e pode ser favorável ou desfavorável para o homem: a pressão que um gás ou vapor exerce sobre a pá de uma hélice, por exemplo, pode ser convertida em trabalho. Por outro lado, a pressão da água nas profundezas do oceano é um dos grandes desafios para os pesquisadores que buscam novas fontes de recursos naturais.[1]
Expressões matemáticas[]
Para problemas que envolvem gases e sólidos a expressão matemática utilizada para expressar pressão é dada por:
ou
Onde:
é a pressão;
é a força normal a superfície;
é a área total onde a força é aplicada.
Para líquidos, a pressão pode ser escrita como:
ou
Onde:
é a pressão em um ponto específico ou a diferença entre a pressão inicial e final do sistema;
é a massa específica do líquido. ;
é a aceleração gravitacional;
é a profundidade do ponto dentro do líquido.
Podemos descobrir a pressão de um gás a determinada temperatura e volume através da equação do gás ideal:
Onde:
é a pressão do gás;
é o número de mols do gás;
é a constante dos gases perfeitos;
é o volume do gás.
A pressão é uma grandeza escalar. O vetor força muda conforme a orientação do plano onde é aplicado, porém o valor da pressão permanece o mesmo, ou seja, é independente de direção. O vetor força que caracteriza a pressão pode ser relacionado ao vetor da força normal, uma vez que ambos são perpendiculares à superfície. [1]
Unidades[editar | editar código-fonte]
Sendo a definição de pressão: força por unidade de área, analogamente a unidade será newton por metro quadrado (N/m2). Em homenagem a Blaise Pascal, por suas diversas contribuições relativas à pressão, pressão mecânica e hidrostática, a unidade no Sistema Internacional para medir pressão é o Pascal (Pa).
Em geral, a unidade é encontrada na forma de milhar(kPa), uma vez que as medidas de pressão geralmente apresentam valores altos dessa unidade. A pressão exercida pela atmosfera ao nível do mar, por exemplo, corresponde a aproximadamente 101.325 Pa (pressão normal), e esse valor é normalmente associado a uma unidade chamada atmosfera padrão(atm).
Outras unidades[editar | editar código-fonte]
- Atmosfera é a pressão correspondente a 0,760m (760mm) de Mercúrio, com densidade de 13,5951 g/cm³ a uma aceleração gravitacional de 9,80665 m/s².
- Bária é a unidade de pressão no Sistema CGS de unidades e vale uma dyn/cm².
- Bar é um múltiplo da bária, onde 1 bar = 106 bárias.
- PSI (pound per square inch), libra por polegada quadrada, é a unidade de pressão no sistema inglês/americano, onde 1 psi = 0,07 bar.
- milibar ou hectoPascal é um multiplo do pascal, onde 1 hPa = 100 Pa. Geralmente utilizado na meteorologia.
- mmHG, também chamada de Torricelli, é uma unidade de pressão antiga inventada com o surgimento do barômetro, onde 1 mmHG = 133,332 Pa.
- mH2O é uma unidade relativa a pressão necessária para elevar em um metro o nível de uma coluna de água em um barômetro, sendo 1 mH2O = 9806,65 Pa.
- kgf/cm² representa o peso normal do ar ao nível do mar por cm², sendo 1 kgf/cm² = 98066,52 Pa.
| Nomenclatura | Atmosfera | Pascal | Bária | Bar | milibar ou hectopascal | mmHg | mH2O | kgf/cm² |
|---|---|---|---|---|---|---|---|---|
| Unidade | Atm | Pa | Ba | Bar | mBar / hPa | mmHg | mH2O | kgf/cm² |
| Atmosfera | 1,01325×105 | 1,01325×106 | 1,01325 | 1013,25 | 760,0 | 10,33 | 1,033 | |
| Pascal | 9,869×10-6 | 10 | 10-5 | 0,01 | 7,501×10-3 | 1,020×10-4 | 1,019×10-5 | |
| Bária | 9,869×10-7 | 0,1 | 10-6 | 0,001 | 7,501×10-4 | 1,020×10-5 | 1,020×10-2 | |
| Bar | 0,9869 | 100000 | 1000000 | 1000 | 750,1 | 10,20 | 1,020 | |
| mBar ou hPa | 9,869×10-4 | 100 | 1000 | 0,001 | 0,7501 | 1,020×10-2 | 10,20 | |
| mmHg | 1,316×10-3 | 133,3 | 1333 | 1,333×10-3 | 1,333 | 1,360×10-2 | 13,60 | |
| mH2O | 9,678×10-2 | 9807 | 9,807×104 | 9,807×10-2 | 98,06 | 73,56 | 0,100 | |
| kgf/cm² | 0,968 | 9,810×104 | 9,810×105 | 0,9810 | 981,0 | 735,8 | 10,00 |
Instrumentos de medição[editar | editar código-fonte]
Manômetro[editar | editar código-fonte]
O manômetro é um instrumento utilizado para medir a pressão de um líquido ou de um gás.
A experiência pode ser feita de várias maneiras, inclusive o arranjo dos equipamentos pode variar. A técnica para medir a pressão de um fluido consiste em manter o líquido(geralmente mercúrio, devido a sua alta densidade) dentro de um recipiente com duas extremidades que permitam manejar a pressão na entrada e a sua abertura ou fechamento. Nessas extremidades podemos colocar gases ou outros líquidos, dependendo da experiência em questão. De acordo com a altura da coluna de líquido, pode-se estimar a pressão que ela exerce sobre a pressão de entrada (geralmente é a pressão atmosférica) utilizando a equação que relaciona altura e densidade do líquido à pressão que ele exerce no meio.
Outro tipo de manômetro mais sofisticado consiste em um tubo flexível com uma extremidade ligada a um ponteiro e a outra aberta para a passagem de determinado gás ou líquido. Conforme o recipiente enche, a pressão no tubo deforma a geometria do recipiente, que por sua vez acaba deslocando o ponteiro. Esse tipo de manômetro tem um caráter mais prático, e o outro mais didático.[3]
Piezômetro[editar | editar código-fonte]
O piezômetro é um aparelho utilizado para medir a pressão que a água (ou sua ausência) exerce na composição do solo. O equipamento consiste em um tubo no qual uma extremidade é conectada a um recipiente com algum líquido(geralmente mercúrio, devido a sua alta densidade) e a outra é revestida por algum material poroso, como uma esponja, por exemplo. O tubo é então preenchido com água, e o líquido de medição é separado da água por vácuo ou gás. Quando o solo está seco, a água do tubo é absorvida pela terra e a coluna de líquido de medicação sobe. Quando o solo está muito umido o processo contrário ocorre, enchendo completamente o tubo com água e diminuindo a coluna de líquido.
Com a equação para medir pressão em líquidos podemos calcular a poro-pressão(ou carga piezométrica) do solo. Esse tipo de medida é muito útil, pois permite monitorar a umidade do solo e evitar situações extremas, como deslizamentos devido a erosão do solo.[4]
Barômetro[editar | editar código-fonte]
Barômetro feito com uma coluna de mercúrio.
O barômetro é um equipamento que nos permite calcular algumas grandezas indiretamente através da pressão.
O primeiro barômetro consistia em um tubo com um lado fechado e o outro fixado em algum recipiente, de forma a permitir a passagem de algum fluido desse recipiente para dentro do tubo. Adicionando ao pequeno reservatório algum líquido(geralmente mercúrio, devido a sua alta densidade) para que este sirva como um indicador. Conforme sabemos da hidrostática, um líquido exerce pressão igual para todos os lados. Assim sendo, quando a parte externa do recipiente for submetida a determinada pressão, o líquido vai exercer a mesma pressão na parte interna do tubo. Caso essa pressão externa seja maior que a interna, a coluna do líquida vai subir a fim de nivelar o sistema. Caso contrário, a coluna desce e a parte de cima fica com vácuo.
Partindo da equação que relaciona a diferença de altura do líquido com a sua pressão, e sabendo qual a pressão interna do tubo, podemos calcular quanto vale a pressão externa em qualquer lugar. Através dessa experiência (conhecida como experiência de Torricelli) podemos determinar a altura do local onde estamos com relação ao nível do mar. Sabe-se que uma coluna de mercúrio, por exemplo, mede 76cm ao nível do mar, e que esse valor diminui quando alcançamos altitudes maiores, pois a pressão atmosférica é menor.[3]
Pressão em gases[editar | editar código-fonte]
Segundo a teoria cinética dos gases, um gás é composto por um grande número de moléculas que se movimentam muito rápido e de forma aleatoria, causando frequentes colisões entre as moléculas do gás e com as paredes de qualquer tipo de recipiente. Essas moléculas apresentam um certo momento, dado pelo produto entre a massa e a velocidade da molécula. No instante em que uma molécula colide com uma parede, as moléculas transmitem momento à superfície, e como consequencia produzem uma força perpendicular à essa superfície. A soma de todas essas forças oriundas de colisões em uma determinada superfície, dividida pela área da mesma, resulta na pressão exercida por um gás em um determinado recipiente.[1]
Algumas aplicações da pressão nos gases podem ser observadas na utilização da pressão que o vapor da água exerce sobre determinada superfície quando confinado em um espaço fechado. Esse processo pode ser encontrado em usinas nucleares, onde uma pá gira com a pressão do vapor e converte essa energia em eletricidade. Além disso, observamos a pressão em gases sendo utilizada diariamente no freio do ônibus, por exemplo. O freio de veículos pesados conta com um sistema que usa ar comprimido para cessar o movimento.
Pressão em fluidos[editar | editar código-fonte]
Um corpo no estado líquido é caracterizado por apresentar uma distância entre suas moléculas que permite ao corpo adequar-se ao ambiente em que se encontra. As características da pressão nos líquidos é semelhante a que encontramos nos gases: o líquido exerce pressão para todos os lados de um recipiente e em qualquer corpo que for imerso nele.
Segundo o princípio de Pascal, ao exercermos pressão em um fluido confinado em um recipiente, essa é transmitida integralmente a todos os ponto desse recipiente. Uma experiências que pode ajudar a compreender esse princípio é a dos vasos comunicantes: Ao armazenarmos algum líquido em uma estrutura com colunas de volumes diferentes podemos observar que o líquido preenche todas as colunas a mesma altura, desconsiderando as diferenças de volume. Isso prova que o fluido espalha-se uniformemente, portanto, exerce pressão igual em todas as direções.[1] Essa demonstração foi muito importante para o surgimento dos sistemas hidraulicos, essenciais nos dias de hoje.
A pressão em líquidos tem algumas diferenças da pressão nos gases. Com os gases, quanto maior a altitude menor a pressão, já com os líquidos, quanto maior a profundidade, maior a pressão. Isso é facil de ser evidenciado - basta mergulhar e automaticamente sentimos a pressão aumentando. É instintivo pensar que ao furar uma garrafa de água, a vazão de um furo na sua base será maior do que a de um furo lateral(considerando que ambos tem a mesma área). Essa diferença é devida a maior pressão no fundo da garrafa, devido a altura da coluna de água.[3]
Outra característica marcante da pressão nos líquidos e demais estados da matéria é sua propriedade de alterar os outros elementos do conjunto: temperatura, pressão e volume. Podemos perceber isso ao cozinhar feijão em uma panela de pressão: o vapor da água aumenta a pressão no interior da panela, e isso provoca uma alteração do ponto de ebulição da água, que passa a ferver acima dos 100°C. Isso agiliza o processo de cozimento do grão do feijão, que seria muito mais lento se não fosse o advento da panela de pressão.
Pressão em sólidos[editar | editar código-fonte]
Existe uma área da física que aborda o assunto pressão com restrição aos corpos rígidos. Esse assunto é estudado profundamente devido as sua extrema importância. A tensão mecânica, como é chamada, estuda todos os tipos de pressões e tensões que são encontradas dentro ou sobre um corpo material, sendo elas:
- Tensão de tração;
- Tensão de compressão;
- Tensão de cisalhamento;
- Tensão elástica;
- Tensão plástica;
- Tensão de escoamento.[5]
Diferente da pressão nos fluidos, em corpos rígidos os átomos não têm tanta liberdade e acabam tendo seus movimentos restringidos, ou seja, não exercem pressão ao seu redor. Se pegarmos uma pedra e largarmos em uma superfície, a única pressão que a pedra exerce no sistema é a resultante de sua força peso e da área da sua base, que pressiona a mesa. Portanto, percebemos que a pressão dos sólidos é ocasionada necessariamente por uma força(a própria força peso, por exemplo) que usa o sólido como recurso para ampliar sua força e área. Este conjunto de informações é suficiente para refletir sobre as consequências dessas tensões no ambiente em que vivemos.
Uma aplicação para essas observações são os patins. A patinação sobre o gelo utiliza dos artifícios da pressão para proporcionar menos aderência aos praticantes do esporte. Vamos entender por quê:
O metal utilizado como lâmina na sola do sapato de patinação é muito fino, e sua área é muito pequena frente ao peso do patinador. Como a pressão é inversamente proporcional a área de abrangência da força, quanto menor o metal mais pressão será feita sobre o gelo.
Assim como a água, o gelo sofre algumas mudanças de características. A que estamos interessados no momento revela que o gelo sobre os patins está sobre uma pressão tão intensa que acaba trocando de estado da matéria e vira liquido mesmo a temperaturas abaixo de zero. Graças a isso, os patins utilizam a força peso do patinador para derreter uma fina camada de gelo em baixo da lâmina quando está deslizando, aumentando sua velocidade e lubrificando o caminho.[1]
Alguns fenômenos naturais como os glaciares também tem alguns fatores relacionados a pressão que os cubos de gelo exercem um sobre o outro, fazendo com que o gelo mais em baixo derreta e o gelo que está por cima,fazendo uma trilha de água e escoe os blocos até algum rio ou oceano(ou até que sequem).
Estadologia Graceli – 4. E princípio entrópico tempo / instabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Postado por physicists Ancelmo Luiz Graceli às 02:43
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
momentum magnético do elétron durante efeito termo-fotoelétrico e no sistema decadimensional e categorial Graceli.

x
x

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
momentum magnético do elétron + termo-fotoelétrico + entropia quântica no SDC GRACELI
segunda-feira, 28 de janeiro de 2019
momentum magnético do elétron durante efeito termo-fotoelétrico e no sistema decadimensional e categorial Graceli.
x
x
x
= entropia reversível

é o magnetão de Bohr,
[a teoria clássica prediz que
; um grande êxito da equação de Dirac foi a predicção de que
, que está muito próximo do valor exacto (que é ligeiramente superior a dois; esta última correcção se deve aos efeitos quânticos do campo eletromagnético)].
Mais detalhes em: Energia do fóton
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Momento magnético do elétron[editar | editar código-fonte]
O momento (dipolar) magnético de um eletrão é:
onde
Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
Algebricamente:
Onde:
- h é a constante de Planck,
- f é a frequência do foton incidente,
é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
é a energia cinética máxima dos elétrons expelidos,
- f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
- m é a massa de repouso do elétron expelido, e
- vm é a velocidade dos elétrons expelidos.
Notas:
- Se a energia do fóton (hf) não é maior que a função trabalho (
), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por
.
- Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
- Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.
A equação fundamental de Gibbs[editar | editar código-fonte]
Uma expressão para a diferença de energia interna é chamada de equação fundamental de Gibbs ou simples equação de Gibbs :A importância dessa equação consiste em que ela representa a base sobre a qual todos os modernos aparelhos matemáticos de fenomenologia termodinâmica, tanto os conceitos de equilíbrio e não-equilíbrio, são baseados. A equação de Gibbs pode ser representada para uso de outros potenciais termodinâmicos equivalentes nas seguintes formulações:
Estadologia Graceli – 4. E princípio entrópico tempo / instabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Postado por physicists Ancelmo Luiz Graceli às 02:43
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
![{\displaystyle <\psi |{\mathcal {T}}\{{\frac {\delta }{\delta \phi }}F[\phi ]\}|\psi >=-i<\psi |{\mathcal {T}}\{F[\phi ]{\frac {\delta }{\delta \phi }}S[\phi ]\}|\psi >}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ba0be3849672434b7840f456ba519bce67a5b42)
x

= entropia reversível
![{\displaystyle \rho ({\mathcal {T}}\{{\frac {\delta }{\delta \phi }}F[\phi ]\})=-i\rho ({\mathcal {T}}\{F[\phi ]{\frac {\delta }{\delta \phi }}S[\phi ]\})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/813a4318bef20e51efbb7bba61edc33615a2031a)
x

= entropia reversível

x

= entropia reversível
![{\displaystyle F[\phi ]={\frac {\partial ^{k_{1}}}{\partial x_{1}^{k_{1}}}}\phi (x_{1})\cdots {\frac {\partial ^{k_{n}}}{\partial x_{n}^{k_{n}}}}\phi (x_{n})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/380681744b427fb7ca61b3058f2c68e3f33295e2)
x

= entropia reversível
![{\displaystyle {\frac {\delta S}{\delta \phi (x)}}[-i{\frac {\delta }{\delta J}}]Z[J]+J(x)Z[J]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3beff8361cbdd44e5aefbfaa52205d83333b0c9e)
x

= entropia reversível
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Equação de Schwinger-Dyson + entropia no sistema decadim. e cat. Graceli
domingo, 27 de janeiro de 2019
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
x
x
x
decadimensional
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
A equação Schwinger-Dyson, de acordo com Julian Schwinger e Freeman Dyson, é uma equação da Teoria quântica de campos. Dada uma função F delimitada sobre as configurações do campo e, em seguida, para cada estado | ψ> (que é a solução QFT), então:
S com a função de ação e \mathcal (T) operação ordenada de tempo.
Da mesma forma, na formulação do estado densidade para qualquer estado (válidos) ρ, temos:
Estas infinitas equações podem ser usados para resolver a funções correlativas sem interrupção.
Isso também pode reduzir a ação por separação S: S [φ] = 1 / 2 D-1ij φ i + j φ Sint [φ] para o primeiro mandato quadrático D-1 e um maior rigor covariante simétrico e reversível na notação de categoria 2, na notação de DeWitt. Assim, podemos reescrever as equações do seguinte modo:
Se F é uma função de φ e, em seguida, para um operador K, M [K] é definido como um operador que substitui K φ. Por exemplo, se
e G é uma função de J, então:
.
Se temos uma função analítica Z (conhecida função geradora) J (fonte conhecida do campo) satisfazendo a equação:
,
então usando a equação Schwinger-Dyson para o geradorr Z:
Estadologia Graceli – 4. E princípio entrópico tempo / instabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Postado por physicists Ancelmo Luiz Graceli às 02:43
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Postado por cientista e filósofo Ancelmo Luiz Graceli às 01:11
Assinar: Postagens (Atom)
Postado por cientista e filósofo Ancelmo Luiz Graceli às 01:11
Assinar: Postagens (Atom)
Postado por cientista e filósofo Ancelmo Luiz Graceli às 01:11
Assinar: Postagens (Atom)
Postado por cientista e filósofo Ancelmo Luiz Graceli às 01:11
Assinar: Postagens (Atom)
Tema Simples. Tecnologia do Blogger.Ancelmo Luiz Graceli às 01:11
Assinar: Postagens (Atom)
Tema Simples. Tecnologia do Blogger.Postado por cientista e filósofo Ancelmo Luiz Graceli às 01:11
Assinar: Postagens (Atom)
Tema Simples. Tecnologia do Blogger.ntista e filósofo Ancelmo Luiz Graceli às 01:11
Assinar: Postagens (Atom)
Tema Simples. Tecnologia do Blogger.tista e filósofo Ancelmo Luiz Graceli às 01:11
Assinar: Postagens (Atom)
- Gerar link
- X
- Outros aplicativos
Comentários
Postar um comentário